О КОРРЕЛЯЦИИ ЭНЕРГИИ СВЯЗИ ПАР АТОМОВ МЕТАЛЛОВ С КОЭФФИЦИЕНТОМ СУХОГО ТРЕНИЯ

В.М. Юров

Ранее нами были рассчитаны коэффициенты трения в паре металл – металл (табл. 1).

Таблица 1 Теоретические значения коэффициента трения в паре металл – металл

Пара трения	k	Пара трения	k	
свинец - свинец	0,1	серебро - серебро	0,4	
олово - олово	0,2	золото - золото	0,4	
железо - железо	0,6	медь - медь	0,5	
алюминий - алюминий	0,3	никель - никель	0,8	

Полезная информация о поверхностной энергии металлов (и коэффициенте трения) может быть получена в рамках метода функционала плотности. В таблице 2 представлены результаты расчета энергии связи методом функционала плотности.

Таблица 2 Энергия связи (ккал/моль) пар атомов металлов

Металл	Ag	Cd	Cu	Mg	Sn	Pb	Zn
Ag	29,4	4,6	39,9	6,5	18,7	29,6	4,4
Cd		-	6,7	-	4,8	8,1	-
Cu			36,8	9,7	32,2	36,2	6,8
Mg				-	5,3	4,5	-
Sn					31,3	21,1	5,5
Pb						29,3	8,3
Zn							-

Ряд элементов M, упорядоченный по относительному сродству Ag к M, можно представить в виде Pb > Sn > (Cu, Mg) > Zn > Cd (табл. 2). Данные таблицы 2 позволяют установить соответствующий ряд элементом M, упорядоченный по относительному сродству Cu к M: Pb > Sn > (Mg, Ag) > Zn > Cd. Таким образом, наиболее перспективными для создания антифрикционных пар трения являются сплавы из комбинации серебра или меди со свинцом или оловом. Сравнение таблиц 2 и 1 показывает полную корреляцию между энергией связи и коэффициентом сухого трения в паре металл – металл.

ТЕОРЕТИЧЕСКИЕ ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ТРЕНИЯ СКОЛЬЖЕНИЯ В ПАРЕ МЕТАЛЛ – МЕТАЛЛ

В.М. Юров, С.А. Гученко, Н.Х. Ибраев

Свойства покрытий, как и тонких пленок, определяются их поверхностным натяжением б. Силу трения скольжения в вакууме можно представить в виде:

$$F_{rp} = \int_{I} \sigma dl \approx \sigma L, \tag{1}$$

L – длина пройденного пути. Для зависимости температуры плавления тонких пленок от их размера мы получили следующее выражение:

$$T_{nn} = T_0 (1 - r_k / r), \tag{2}$$

где T_0 – температура плавления массивного образца, r_k = $2\sigma\upsilon/RT$. По таким зависимостям нами определены величины σ металлов (таблица 1).

Таблица 1 Поверхностное натяжение некоторых металлов в твердой фазе

Металл	σ_{τ} , эрг/см ²	Металл	σ _т , эрг/см ²
Свинец	100	Серебро	375
Олово	177	Золото	396
Железо	612	Медь	531
Алюминий	279	Никель	795

Поскольку сила трения скольжения в (1) $F_{\tau p}$ =kN, то на основе таблицы (1) нетрудно получить для коэффициента трения в паре металл–металл значения (таблица 2).

Таблица 2 Значения коэффициента трения скольжения в паре металл – металл

Пара трения	k	Пара трения	k
свинец - свинец	0,1	серебро - серебро	0,4
олово - олово	0,2	золото - золото	0,4
железо - железо	0,6	медь - медь	0,5
алюминий - алюминий	0,3	никель - никель	0,8

Одноименные металлы в паре трения имеют большой коэффициент трения. Поэтому в конструкциях пар трения необходимо применять разнородные материалы.

ФИЗИЧЕСКИЙ СМЫСЛ КОЭФФИЦИЕНТА РУСАНОВА В.М. Юров

Для зависимости поверхностного натяжения наночастиц от их размера А.И. Русанов получил следующую формулу [1]:

$$\sigma(\mathbf{r}) = \mathbf{K} \cdot \mathbf{r}.\tag{1}$$

Однако значения параметра К для конкретных систем остаются до сих пор практически не исследованными. В рамках нашей модели [2] для К нетрудно получить:

$$K = \frac{RT}{2\vartheta} \cdot \left(1 + \frac{A(r)}{A_0}\right). \tag{2}$$

Здесь A_0 – измеряемая физическая величина массивного образца; ϑ - молярный объем; T – температура; R – газовая постоянная. При этом верны соотношения [2]:

$$A(r) = A_0 (1 - \frac{d}{r}). d = \frac{2\sigma\vartheta}{RT}.$$
 (3)