ИММУНОМОДУЛИРУЮЩИЕ, АНТИОКСИДАНТНЫЕ И ГЕПАТОПРОТЕКТОРНЫЕ ЭФФЕКТЫ МЕКСИКОРА И ФОСФОГЛИВА ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ИШЕМИЧЕСКОМ ПОРАЖЕНИИ ПЕЧЕНИ

Николаев С.Б., Лазаренко В.А., Быстрова Н.А., Конопля А.И.

Курский государственный медицинский университет Курск, Россия

В клинической практике бескровных манипуляций на печени нередко используется пережатие гепато-дуоденальной связки (ГДС). Возникающая при этом ишемия печени может быть причиной нарушений функций не только этого органа, но и организма в целом. Ишемией печени сопровождается также острая массивная кровопотеря. Для коррекции ишемических и постишемических расстройств в печени используются средства антиоксидантной направленности. Эффективность многих из них недостаточно велика. что обуславливает необходимость поиска новых препаратов, окасочетанное гепатопротекторное, антиоксидантное и иммуномодулирующее действие в условиях ишемии печени.

Цель работы: исследовать возможность использования мексикора и фосфоглива для коррекции иммунометаболических расстройств сопровождающих экспериментальную ишемию печени.

Материалы и методы: Исследования выполнены на крысах Wistar обоего пола массой 180-220 г. с соблюдением принципов, изложенных в Конвенции по защите позвоночных животных, используемых для экспериментальных и других научных целей (г. Страсбург, Франция, 1986). Острое ишемическое поражение печени вызывали оперативным методом в условиях внутрибрюшного гексеналового наркоза (30 мг/кг веса) путем пережатия ГДС в течение 20 минут.

Препараты вводили крысам внутрибрюшинно в дозах: мексикор (ООО «ЭкоФармИнвест») – 10 мг/кг веса за 1 час до операции и четырехкратно с интервалом в 24 часа после операции; фосфоглив (НИИ «Биомедхимии» РАМН) – 200 мг сухого лиофилизированного порошка /кг веса шестикратно до операции и четырехкратно после с интервалом 24 часа.

Крыс иммунизировали однократным внутрибрюшинным введением эритроцитов барана на 1-5-10-15-е сутки после моделирования ишемии печени. О выраженности гуморального иммунного ответа судили по количеству антителообразующих клеток (АОК) в селезенке на пятые сутки после иммунизации. О выраженности гиперчувствительности замедленного типа на эритроциты барана судили по разнице масс регионарного и контрлатерального подколенных лимфатических узлов (РМЛ). Функционально-метаболическую активность нейтрофилов периферической крови оценивали по величинам индекса активности фагоцитов (ИАФ) и фагоцитарного резерва нейтрофилов (ФРН). В гомогенате ткани печени крыс определяли содержание первичных продуктов перекисного окисления липидов (ПОЛ) – диеновых конъюгатов (ДК) и вторичных - малонового диальдегида (МДА). В сыворотке и плазме крови определяли активность АлАТ, АсАТ, гаммаглутамилтранспептидазы (ГГТП), щелочной фосфатазы (ЩФ), концентрацию билирубина по Ендрассику-Грофу, холестерина по Ильку, бета-липопротеидов по Бурштейну, общего белка, протромбинового индекса (ПТИ), фибриногена. Величины этих показателей определяли унифицированными методами.

Достоверность статистических различий средних арифметических величин оценивалась с помощью однофакторного дисперсионного анализа — ANOVA, критерия Ньюмена-Кейлса и Крускала-Уоллиса в программном комплексе «БИОСТАТИСТИКА для Windows».

Результаты и их обсуждение

Ишемическое повреждение печени неизбежно приводит к нарушению функции ее клеток, что подтверждается развитием биохимических синдромов поражения гепатоцитов (табл. 1). Двадцатиминутное пережатие ГДС приводило к развитию цитолитического синдрома, проявлявшегося резким увеличением активности трансаминаз, ГГТП, билирубина. Максимальный подъем исследуемых показателей соответственно в 4,9; 3,5; 2,2 и 1,9 раза по сравнению с группой интактных животных происходил на 5-е сутки после ишемического воздействия. Биохимические проявления цитолитического синдрома наблюдались в течение 15 суток после пережатия ГДС и коррелировали с сохранявшейся в эти же сроки стойкой

иммуносупрессией и активацией ПОЛ в гепатоцитах. Выраженность и продолжительность синдрома гепатодепрессии была незначительной: к 5-м суткам отмечалось достоверное снижение концентрации фибриногена в 1,3 раза, ПТИ и общего белка 1,3 и 1,2 раза соответственно. Однако уже к 10-м суткам показатели не отличались от контрольных, за исключением уровня фибриногена. Достоверных изменений концентрации холестерина, беталипопротеидов и ЩФ - маркеров холестатического синдрома - в условиях двадцатиминутной ишемии гепатоцитов не наблюдалось на всех сроках эксперимента (табл. 1).

Таблица 1 Продолжительность и выраженность иммунометаболических нарушений при двадцатиминутной ишемии печени

Nº		Интактные	Время после пережатия ГДС				
п/п	Показатели	животные	5-е сутки	10-е сутки	15-е сутки	20-е сутки	
11/11		Группа 1	Группа 2	Группа 3	Группа 4	Группа 5	
	АОК, тыс. на орган	25,7±2,1	10,2±0,9 ^{*1}	13,5±1,1 ^{*1}	19,6±1,7 ^{*1,2,3}	24,6±2,0 ^{*2-4}	
	РМЛ, мг	5,3±0,4	3,1±0,2 ^{*1}	3,5±0,3 ^{*1}	4,8±0,3 ^{*2,3}	5,1±0,4 ^{*2,3}	
	ФРН	21,1±1,8	12,4±1,0 ^{*1}	14,1±1,2 ^{*1}	15,5±1,1 ^{*1,2}	20,5±1,7 ^{*2-4}	
	ФАN	0,72±0,07	0,24±0,02 ^{*1}	0,29±0,02 ^{*1}	0,51±0,05 ^{*1-3}	0,70±0,06 ^{*2-4}	
	ДК, ∆D ₂₃₃ /г ткани	0,93±0,08	1,88±0,15 ^{*1}	1,35±0,12 ^{*1,2}	0,99±0,08 ^{*2,3}	0,95±0,07 ^{*2,3}	
	МДА, нмоль/г ткани	7,9±0,7	18,4±1,5 ^{*1}	14,2±1,2 ^{*1,2}	10,8±0,9 ^{*1-3}	7,8±0,8 ^{*2-4}	
	АсАТ, ммоль/ (ч х л)	0,76±0,05	2,41±0,18 ^{*1}	2,24±0,17 ^{*1,2}	1,47±0,11 ^{*1-3}	0,84±0,06 ^{*2-4}	
	АлАТ, ммоль/ (ч х л)	0,58±0,04	2,95±0,20 ^{*1}	1,8±0,14 ^{*1,2}	1,02±0,08 ^{*1-3}	0,62±0,05 ^{*2-4}	
	ГГТП, ммоль/ (ч х л)	0,91±0,06	1,97±0,14 ^{*1}	1,52±0,11 ^{*1,2}	1,24±0,10 ^{*1-3}	0,94±0,07 ^{*2-4}	
	Общий билирубин, мкмоль/л	6,1±0,3	11,9±0,5 ^{*1}	8,7±0,4 ^{*1,2}	6,6±0,3 ^{*2,3}	6,2±0,3 ^{*2,3}	
	ЩФ, ммоль/ (ч х л)	5,80±0,35	6,5±0,42	6,10±0,38	5,95±0,32	5,76±0,35	
	Холестерин, ммоль/л	3,91±0,25	4,15±0,30	4,03±0,28	3,86±0,22	3,94±0,27	
	Бета- липопротеиды, г/л	3,1±0,2	3,4±0,21	3,8±0,25	2,9±0,19	3,2±0,22	
	Фибриноген, г/л	3,43±0,21	2,62±0,15 ^{*1}	2,80±0,16 ^{*1}	3,21±0,19 ^{*2,3}	3,46±0,23 ^{*2,3}	
	ПТИ, %	79,5±3,1	60,2±2,3 ^{*1}	75,1±2,9 ^{*2}	78,6±3,0 ^{*2}	81,4±2,8 ^{*2}	
	Общий белок, г/л	87,6±3,3	72,4±2,9 ^{*1}	85,1±3,0 ^{*2}	86,8±3,2 ^{*2}	89,2±3,1 ^{*2}	

Примечание: * - достоверность различий средних арифметических величин, p<0,05; цифры рядом со звездочкой обозначают, по отношению к показателю какой группы эти различия достоверны

Таблица 2 Иммунометаболические эффекты мексикора и фосфоглива в условиях двадцатиминутной ишемии печени (пятые сутки)

№ п/п	Показатели	Интактные животные	Ишемия печени	Ишемия печени и мексикор	Ишемия печени и фосфоглив
		Группа 1	Группа 2	Группа 3	Группа 4
	АОК, тыс. на орган	25,7±2,1	10,2±0,9 ^{*1}	23,5±2,3 ^{*2}	22,1±2,1 ^{*2}
	РМЛ, мг	5,3±0,4	3,1±0,2 ^{*1}	5,1±0,4 ^{*2}	4,8±0,35 ^{*2}
	ФРН	21,1±1,8	12,4±1,0 ^{*1}	20,2±1,7 ^{*2}	19,6±1,7 ^{*2}
	ФАN	0,72±0,07	0,24±0,02 ^{*1}	0,71±0,06 ^{*2}	0,64±0,06 ^{*2}
	ДК, ∆D ₂₃₃ /г ткани	0,93±0,08	1,88±0,15 ^{*1}	1,02±0,09 ^{*2}	1,10±0,1 ^{*2}
	МДА, нмоль/г ткани	7,9±0,7	18,4±1,5 ^{*1}	8,9±0,7 ^{*2}	9,3±0,8 ^{*2}
	АсАТ, ммоль/(ч х л)	0,76±0,05	2,41±0,18 ^{*1}	0,85±0,06 ^{*2}	0,78±0,06 ^{*2}
	АлАТ, ммоль/(ч х л)	0,58±0,04	2,95±0,20 ^{*1}	0,67±0,05 ^{*2}	0,60±0,04 ^{*2}
	ГГТП, ммоль/(ч х л)	0,91±0,06	1,97±0,14 ^{*1}	1,07±0,07 ^{*2}	0,98±0,06 ^{*2}
	Общий билирубин, мкмоль/л	6,1±0,3	11,9±0,5 ^{*1}	7,0±0,4 ^{*2}	6,5±0,4 ^{*2}
	Фибриноген, г/л	3,43±0,21	2,62±0,15 ^{*1}	3,40±0,2 ^{*2}	3,21±0,19 ^{*2}
	ПТИ, %	79,5±3,1	60,2±2,3 ^{*1}	79,7±3,0 ^{*2}	76,3±2,9 ^{*2}
	Общий белок, г/л	87,6±3,3	72,4±2,9 ^{*1}	85,9±3,2 ^{*2}	84,0±3,0 ^{*2}

Учитывая, что максимальные изменения изучаемых показателей при ишемии печени регистрировались на пятые сутки после оперативного вмешательства, для изучения иммунометаболических эффектов мексикора и фосфоглива в дальнейшем динамика всех исследуемых показателей определялась именно в эти сроки.

В условиях двадцатиминутного ишемического поражения печени мексикор и фосфоглив независимо друг от друга нормализовали все изучаемые показатели иммунометаболического гомеостаза (табл. 2). При этом летальность крыс при двадцатиминутной ишемии печени на фоне введения мексикора или фосфоглива снижалась с 17% до 9%.

Можно предположить, что в основе иммунометаболических эффектов мексикора в условиях ишемического поражения гепатоцитов лежит его антиоксидантная и энергизирующая активность. Мексикор способен ингибировать ПОЛ и, стабилизируя клеточные мембраны, предотвращать выход в сосудистое русло иммуносупрессирующих субстанций. Кроме того, являясь донором сукцината, он поддерживает активность сукцинатоксидазного звена лимоннокислого цикла и поэтому определенное время может сохранять энергопродукцию в клетках до восстановления адекватного кровотока.

Иммунометаболические эффекты фосфоглива при ишемии печени, по-видимому, определяется входящим в его состав фосфатидил-холином, который являясь основным компонентом фосфолипидной матрицы, восстанавливает структуру и функции поврежденных мембран гепатоцитов, благодаря чему предотвращает потерю клетками ферментов и других активных веществ способных угнетать развитие иммунного ответа.

Приведенные выше результаты исследований свидетельствуют о возможности использования регулятора энергетического обмена и антиоксиданта (мексикора) и полиненасыщенных фосфолипидов (фосфоглив) в условиях острого двадцатиминутного ишемического поражения печени для эффективной коррекции, возникающих иммунометаболических нарушений.