Физико-математические науки

ФОРМИРОВАНИЕ СВОЙСТ В АЛЮМИНИЕВЫХ СПЛАВОВ ПРИ СТАРЕНИИ

Муратов В.С., Дворова Н.В., Морозова Е.А.

Самарский государственный технический университет, Самара, e-mail: muratov@sstu.smr.ru

Структура отливок из алюминиевых сплавов, полученных с разными режимами охлаждения после кристаллизации, формирует закономерности структурообразования при последующей термической обработки.

Чем более полно осуществляется процесс растворения фаз при температуре закалки (T_3), тем более пересыщенным формируется твердый раствор и тем интенсивнее протекают процессы распада пересыщенного твердого раствора при последующем старении. Процессу растворения будет способствовать создание состояния с повышенной степенью неравновесности за счет

форсирования кристаллизационного и послекристаллизационного охлаждения.

Закристаллизовавшиеся в тонкостенной керамической форме при охлаждении на воздухе (скорость охлаждения 1-2°C/c) отливки размером 10×10×30 мм (сплав АК6М2) подвергались после кристаллизации (температура 500°С) охлаждению с различными скоростями. Использовалось охлаждение на воздухе - средняя скорость охлаждения 2°С/с, в холодной, горячей (60 и 80°C) и кипящей воде – средние скорости охлаждения 125, 110, 30 и 6°C/с соответственно. После этого сплав подвергался закалке ($T_2 = 515\,^{\circ}\text{C}, \, \tau_2 = 2\,^{\circ}\text{ч}$) и старению при 190°С. Твердость сплава определялась после различной выдержки при T_c и определялось время $(\tau_{_{c}}^{_{min}})$ достижения сплавом максимальной твердости. Если при охлаждении на воздухе τ_{a}^{min} составляло 2 ч, то при охлаждении в холодной, горячей (60 и 80 °C) и кипящей воде $\tau_{\rm o}^{\rm min}$ составляло 0,5; 0,5; 0,7 и 1,5 ч соответственно. Таким образом, наиболее эффективно для сокращения длительности старения применение ускоренного охлаждения после кристаллизации со скоростями ≥ 30 °C/с.

«Современные наукоемкие технологии», Египет, 20-27 февраля 2011 г.

Биологические науки

СРАВНИТЕЛЬНОЕ ДЕЙСТВИЕ СОЛЕЙ КОБАЛЬТА НА БАЛАНС БЕЛКОВ И ЖИДКОСТИ В ОРГАНИЗМЕ КРЫС

Хантурина Г.Р.

Карагандинский государственный университет им. Е.А. Букетова, Караганда,

e-mail: khanturina@hotmail.com

В работе изучали транскапиллярный обмен белков в крови, лимфе, моче.

Результаты эксперимента показали, что при острой интоксикации солями кобальта ($\mathrm{LD}_{50}-80$ мг/кг) содержание белка в плазме крови понизилось на 6,8% (p<0,05) по сравнению с контрольной группой крыс. В группе животных, затравленных солями кобальта на фоне препарата «Кровохлебка» содержание белка в плазме крови повысилось на 6,9% (p<0,05) в отличие

от животных, отравленных только солями кобальта. Содержание белка в лимфе у группы животных, получивших сублетальные дозы солей кобальта повысилось на 26,2% (p < 0,001) в отличие от контроля. На фоне кровохлебки при отравлении кобальтом количество белка в лимфе понизилось на 29,6% (p < 0,001) по сравнению с группой животных, получивших только соли кобальта. Содержание белка в моче животных при интоксикации солями кобальта увеличилось на 1093% (p < 0,001) по сравнению с животными контрольной группы. На фоне кровохлебки и солей кобальта содержание белка в моче крыс уменьшилось на 60,8% (p < 0,001) по сравнению с животными, получившими ионы кобальта.

При отравлении солями кобальта выявлено понижение содержания белка в плазме крови, концентрация белка в лимфе и моче увеличилась. Вероятно, это свидетельствует о том, что жидкость и белки уходят из крови в ткани и частично с мочой и происходит сгущение крови (количество эритроцитов увеличилось на 18,9%

(p < 0.01) по сравнению с контрольными животными), что очевидно связано с усилением транскапиллярного перехода белков из крови в ткани. На фоне препарата «Кровохлебка» токсическое

действие солей тяжелых металлом несколько уменьшилось, что показало положительное протекторное действие данного препарата при остром отравлении.

Технические науки

ПЕРСПЕКТИВЫ ПОВЫШЕНИЯ РАБОТОСПОСОБНОСТИ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ ПРИ РАБОТЕ БЕЗ СМАЗКИ

^{1,2}Корнопольцев В.Н., ¹Гурьев А.М., ²Могнонов Д.М.

¹Алтайский государственный технический университет им. И.И. Ползунова, Барнаул, е-mail: gurievam@mail.ru; ²Байкальский институт природопользования Сибирского отделения РАН, Улан-Удэ, е-mail: kompo@mail.ru

Развитие техники сопровождается потребностью в разработке узлов трения, эксплуатируемых в сложных условиях. Среди материалов, применяемых для изготовления опор скольжения выделяются конструкционные материалы на жесткой стальной подложке с припеченным металлокерамическим (бронзовым) пористым слоем, поры которого заполняются антифрикционной композицией. При применении в качестве связующего антифрикционной композиции политетрафторэтилена (ПТФЭ) эти материалы используют для узлов трения, в которых трудно и даже не рекомендуется или невозможно ввести смазочное материалы. Такие листовые антифрикционные материалы (ЛиАМ) широко применяются не только в области общего машиностроения, но и для узлов трения специальной техники.

Одной из первоочередных задач технического материаловедения является создание материалов для узлов трения, способных длительно выдерживать режимы работы с высокими скоростями и нагрузками. Однако долговечность известных промышленных аналогов резко снижается при трении в условиях ограничения смазки при увеличении скорости скольжения.

Причина увеличения износа рабочего слоя ЛиАМ при увеличении скорости скольжения заключается в завышенной объемной составляющей сферической бронзы, при помощи кото-

рой получают пористый металлокерамический слой. Для промышленных аналогов объем металлокерамического слоя составляет 70-75% от общего объема рабочего слоя. При трибоиспытаниях установлено, что благоприятный период трения наблюдается при соотношении площади выступов бронзового каркаса к общей площади контакта один к десяти, т.е. если площадь бронзовых выступов не превышает 10%. В дальнейшем интенсивность износа увеличивается и по мере износа рабочего слоя ее зависимость имеет нелинейный характер. При этом за счет образования большой площади бронзы на рабочей поверхности ЛиАМ увеличивается коэффициент и температура трения.

Увеличение температуры приводит к деструкции антифрикционной фторопластовой смазки, образующейся в зоне сопряжения. Как показывают трибоиспытания ЛиАМ, содержащих в полимерном связующем в качестве наполнителя порошковый свинец, при благоприятных условиях трения (относительно площади контакта, занимаемой бронзовым каркасом), при трении по стальным контр-телам в зоне трения образуется «третье тело» желтого цвета сложного химического состава, которое способствует снижению температуры и коэффициента трения и резко сокращает интенсивность износа. ИК спектральные и термогравиметрические² анализы продуктов износа желтого цвета, переносимых на стальное контр-тело показывают, что трибодеструкция ПТФЭ приводит к значительным изменениям химического состава полимера. Наряду с пиками поглощения, относящимся к валентным колебаниям связи СР, $(1210 \text{ и } 1150 \text{ см}^{-1})$ появляется пики в диапазоне 1450-1350 см-1. Термогравиметрия показывает, что кривая потери массы продуктов износа имеет три дополнительных характерно выраженных участка. Примерно 3 мас. % от общего количества навески продуктов износа теряется в интервале температур 100-270°C, затем еще 3-х % до температуры 325 °C, причем при темпе-

¹ ИК Фурье-спектрометр Excalibur HE 3100, фирма

 $^{^2}$ Синхронный термоанализатор STA 449 C Jupiter, фирма NETZSCH (Германия).