ПРОВОДИМОСТЬ АТМОСФЕРЫ В МОМЕНТ ВЗАИМОДЕЙСТВИЯ АТОМОВ С ЧАСТИЦАМИ СВЕРХВЫСОКИХ ЭНЕРГИЙ

Сокуров В.Ф., Шершунов З.Л.

Таганрогский государственный педагогический институт, Таганрог, e-mail: hershunov_zahar@mail.ru

При прохождении лавины широкого атмосферного ливня (ШАЛ) через атмосферу Земли релятивистские частицы ионизируют атомы воздуха. В результате этого на 1 см пути каждой релятивистской частицы рождается около 100 электрон-позитронных пар [1]. Возникает столб ионизации. Электронный компонент этого столба довольно быстро рекомбинирует, так как время жизни рожденного электрона порядка 10^{-7} с. Ионный же компонент значительно более долгоживущ и рассасывается в течение единиц секунд.

Существующее в атмосфере Земли вертикальное электрическое поле создает электрический ток в столбе ионизации за счет ускорения ионов. Величина плотности этого тока зависит от длины пробега ионов и их скорости, которая в свою очередь зависит от приложенного потенциала. Длина пробега определяется плотностью плазмы и нейтралов в шнуре.

Плотность тока в ионизационном столбе определяется по формуле:

$$j = \frac{e^2 E n}{2M} t,$$

где e — заряд электрона; E — потенциал, приложенный к ионному столбу; M — масса иона; n — концентрация плазмы в столбе ионизации; t — время жизни столба.

Концентрация плазмы в столбе ионизации определяется пространственным распределением частиц ШАЛ:

$$n = I \int_{0}^{r} f(x,t,0) dx,$$
 где $f(x,t,0) = \frac{1(1)}{2\pi r_0^2} \cdot \frac{+x^{1-b}}{\lambda + x} \cdot N(E_0,t,0)$ — функция проставиственного распределения

функция пространственного распределения (ФПР) частиц ШАЛ [2]; I = 80 1/cm [1] — коэффициент линейной ионизации;

$$\lg N(E_0, t, 0) = \lg p_{600} + 4{,}44 - \lg(b - 2) + 0{,}98b$$

полное число частиц на уровне наблюдения [3];

$$b=3,54-2,16(1-\cos\Theta)+0,15$$
 lg p_{600} — параметр, определяющий крутизну ФПР [3]; $x=\frac{r}{r_0}$;

r — расстояние от оси ливня, r_0 — параметр ФПР; $E_0=4,1\cdot 10^{17}~p_{600}^{0.96}$ — энергия первичной частицы [4]; p_{600} — классификационный параметр, измеряемый на Якутской установке ШАЛ [3].

Поскольку максимум развития ливня с $E_0=10^{19}-10^{20}$ эВ находится вблизи уровня моря ($h_{\rm max}=0,5-2,0$ км), приведенные выше уравнения вполне применимы для оценки концентрации плазмы ионизационного столба на этих высотах.

Для определения тока в столбе ионизации необходимо оценить эффективную толщину шнура. Поскольку распределение концентрации плазмы в ионизационном столбе определяется из законов пространственного распределения частиц ШАЛ, зададимся эффективным радиусом порядка мольеровского $R_{\rm эф}=80~{\rm M}$ и определим среднюю концентрацию плазмы на этой плошали

Получим среднюю концентрацию плазмы ионизационного столба ШАЛ с $\rm E_0=10^{20}~\rm 3B$ для 0,5 < h < 2,0 км и 0,5 < R < 100,0 м:

$$\overline{n} = \frac{\iint\limits_{h\,r} n(x,t)xdxdt}{\int\limits_{r} xdx}.$$

Таким образом, эффективный ток в плазме для ливней с $E_0 = 10^{20}$ эВ:

$$I_0^{\mathfrak{I}} = jS_{\mathfrak{I}} = \frac{e^2 E \overline{n} t}{2M} S_{\mathfrak{I}},$$

где $E=1,5\cdot 10^5$ В — потенциал для 0,5 < h < 2,0 км; $t=10^{-2}$ с; $S_3=\pi r_3$; M — масса иона, можно принять равной массе иона кислорода; e — заряд электрона.

Для ливня с $E_0 = 10^{20}\,\mathrm{ 9B}$ получаются следующие значения:

$$j = 8 \cdot 10^{-2} \text{ A/M}, \quad I_{_{9}} = 10^{3} \text{ A}.$$

Так как плотность тока j пропорциональна проводимости σ , то из соотношения $j = \sigma E$, получим значение проводимости в момент прохождения частицы сверхвысокой энергии через атмосферу Земли:

$$\sigma = 10^{-3}$$
 сименс.

Эффективное сопротивление среды $R = 10^2$ Ом.

Выделяемая мощность при прохождении лавины:

$$P = I^2 R = 10^8 \text{ Bt.}$$

Список литературы

- 1. Charman W.N. Atmospheric Electric Fields as a possible from Extensive Air Showers. Nature. 1967.
- 2. Гусев А.Н., Сокуров В.Ф., Черныш Г.Н. Моделирование потока электромагнитного излучения ОНЧ диапазона в высоких широтах // VII школа семинар по ОНЧ излучениям. Якутск: Изд. ЯФ СО АП СССР, 1985. С. 67.
- 3. Гусев А. Н., Сокуров В. Ф., Черныш Г. Н. Плотность потока дискретных сигналов в овале полярных сияний // VII школа-семинар по ОНЧ излучениям. Якутск: Изд. ЯФ СО АП СССР, 1985.
- 4. Efimov N.N., Sokurov V.F. Measurement of Spectrum of the EAS Cerenkov Radiation Densities. Proc.16-th ICRC, Kyoto 1979. Vol. 8. P. 152-155.