При установившемся режиме, когда имеет место только электромеханические процессы, система уравнений (1), описывающая работу АМ, преобразуется в систему

$$\begin{cases} \dot{X}_{x} = SX_{y} - \alpha_{r}X_{x} + \alpha_{s} \\ \dot{X}_{y} = -SX_{x} - \alpha_{r}X_{y} - 1 \\ \dot{S} = -\delta \left[-\alpha_{r} \frac{1 - \mu}{\mu} (X_{x} + \alpha_{s}X_{y}) - M_{H} \right] \end{cases}$$
(6)

где составляющие вектора потокосцепления статорных обмоток, спустя некоторое время после включения AM в сеть, имеют следующие значения

$$\alpha_s \approx \psi_x^y = \frac{\alpha_s}{1 + \alpha_s^2},$$
 (7)

$$-1 \approx \psi_y^y = -\frac{1}{1 + \alpha_e^2},\tag{8}$$

$$\alpha_s^2 \ll 1.$$
 (9

Коэффициент δ обратно пропорционален моменту инерции ротора AM и присоединенных к нему в процессе работы масс (ротора ЭММА), поэтому δ << 1.

Этим обосновывается квазистатйчеокий подход к изучению динамики работы AM, спустя некоторое время после ее включения в сеть, когда скоростью изменений S пренебрегают.

В этой связи в первых двух уравнениях (6) скорость изменения S рассматривается как постоянная величина ($S = {\rm const}$), а электромагнитный момент на валу AM является функцией скорости изменения S. Таким образом, в установившемся режиме работы, приравнивая \dot{X}_x и \dot{X}_y , нулю, получаем

$$X_x^y = \frac{\alpha_r \alpha_s - S}{\alpha_s^2 + S^2}; \tag{10}$$

$$X_{y}^{y} = \frac{\alpha_{r}\alpha_{s} + \alpha_{r}}{\alpha_{r}^{2} + S^{2}}.$$
 (11)

Подставляя значения X_x^y и X_x^y в выражения для электромагнитного момента $M_{_{2\mathrm{M}}}$

$$M_{\scriptscriptstyle \rm DM} = -\alpha_r \frac{1-\mu}{\mu} (X_x + \alpha_s X_y) \qquad (12)$$

получим

$$M_{_{9M}} = \alpha_r \frac{1 - \mu}{\mu} \frac{(1 + \alpha_s^2) S}{\alpha^2 + S^2}.$$
 (13)

С учетом того, что $\alpha_s \to 0$, выражение (13) преобразуется к виду

$$M_{_{9M}} = \alpha_r \frac{1-\mu}{\mu} \frac{S}{\alpha_r^2 + S^2}.$$
 (14)

Коэффицент равен «критическому» скольжению S_k , значения которого приводятся в справочниках.

Таким образом, электромагнитный момент $M_{_{^{3\mathrm{M}}}}$ на валу AM, приводящей ротор ЭММА во вращение, определяется выражением

$$M_{_{3M}} = \frac{1 - \mu}{\mu} \frac{S_k S}{S_k^2 + S^2}$$
 (15)

ипи

$$M_{_{3M}} = \frac{1 - \mu}{\mu} \frac{1}{\frac{S_k}{S} + \frac{S}{S_k}}.$$
 (16)

Список литературы

- 1. Пат. 2045194 Российская Федерация, МПК6 A23G1/18 Электромеханическое устройство для измельчения и перемешивания пищевых продуктов / Беззубцева М.М., Симонов С.И., Азаров Н.Н.; заявитель и патентообладатель AO3T «СПА» заявл. 14.12.1992; опубл. 10.10.1995.
- 2. Пат. 2045195 Российская федерация МПК 6 A23G1/18 Электромагнитный измельчитель / Беззубцева М.М.; заявитель и патентообладатель Санкт-Петербургский технологический институт холодильной промышленности. № 93017860/13; заявл. 04.05.1993; опубл. 10.10.1995, Бюл. № 13 5 с.
- 3. Пат. 84263 Российская федерация, МПК6 B02C19/18. Электромагнитный измельчитель / Волков В.С.: заявитель и патентообладатель Волков В.С. №2008151900/22; заявл. 23.12.2008; опубл. 10.07.2009, Бюл. № 19. 11 с.:ил.
- 4. Беззубцева М.М. Электромагнитные измельчители. Теория и технологические возможности: автореф. дис. ... д-ра техн. наук. СПб.: СПбГАУ, 1997. 24 с.
- 5. Беззубцева М.М., Волков В.С. Теоретические основы электромагнитной механоактивации. СПб.: Изд-во СПбГАУ, 2011.-250 с.
- 6. Беззубцева М.М., Пасынков В.Е., Родюков Ф.Ф. Теоретическое исследование электромагнитного способа измельчения материалов. СПб.: СПбТИХП, 1993. 49 с.
- 7. Демирчан К.С., Нейман Л.Р., Коровкин Н.В. Теоретические основы электротехники: учебник для вузов. 5-е изд. Т.2. СПб.: Питер, 2009. 432 с.: ил.

УСОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИИ ПОЛУЧЕНИЯ ЗОЛОТА ЛИГАТУРНОГО

Жмурова В.В.

Национальный исследовательский Иркутский государственный технический университет, Иркутск, e-mail: v pichugina@list.ru

В настоящее время все чаще для получения золота и серебра вовлекаются в переработку бедные полиметаллические руды, характеризующиеся небольшим содержанием благородных металлов, а так же значительным количеством металлов цветной группы, такие как медь, цинк, свинец, железо т.д. При переработке таких руд, по цианисто-сорбционной технологии, с применением в качестве сорбента активированного угля, данные примеси - металлы переходят в раствор, а затем в цикле электролиза переходят в катодный осадок. Активированный уголь обладает весьма малой селективностью по отношению к металлам цветной группы. При десорбции с угля данные примеси переходят в катодный осадок. При плавке катодных

Таблина 1

осадков (КО) на слиток золота лигатурного данные металлы остаются в слитке, тем самым снижая его качество, что способствует увеличению затрат на аффинажные услуги. В табл. 1

представлен состав КО одного из предприятий работающих по цианисто-сорбционной технологии с применением активированного угля.

Содержание металлов в исходном катодном осадке в%

Au	Ag	Cu	Zn	Pb	Fe	Прочие примеси
21,50	20,99	41,35	0,88	4,64	1,36	9,27

Как видно на диаграмме основной примесью в катодном осадке является медь, содержание которой достигает 40%. Медь имеет близкое родство к благородным металлам и ее присутствие в таких количествах весьма затрудняет производство благородных металлов. Для удаления меди из катодных осадков, а так же получения слитков золота лигатурного с большей массовой долей благородных металлов представлена технология обработки катодного осадка растворами серной кислоты. С целью выявления оптимальных параметров кислотного выщелачивания проведены исследования по кислотной обработке катодного осадка при различных концентрациях от 51 до 365 г/дм³. Время выщелачивания составляет 2 часа, после проведения кислотной обработки катодный осадок промывался водой и затем анализировался на содержание цветной группы, растворы также отдавались на анализ. Для предотвращения появления ошибки эксперимента, опыты производились в двух параллелях. По результатам экспериментов был произведен расчет извлечения металлов в раствор. Т.к. основными примесями присутствующими в катодном осадке являются медь и свинец, то результаты представлены по этим металлам, остальные примеси содержатся в незначительных количествах.

В табл. 2 представлены результаты исследований по выщелачиванию примесей растворами серной кислоты.

 Таблица 2

 Результаты исследований по выщелачиванию примесей растворами серной кислоты

Номер	Концентрация серной	Процент выщелачивания	Процент	Процент извлечения
опыта	кислоты $\Gamma/дм^3$	общих примесей	извлечения меди	свинца
1	51,65	14,21	31,17	2,37
2	51,65	13,52	29,82	2,58
3	106,6	14,45	32,09	3,01
4	106,6	14,70	32,77	3,23
5	165,4	25,28	59,18	3,87
6	165,4	16,69	38,40	3,44
7	227,9	15,94	33,40	0,22
8	227,9	3,20	2,47	0,43
9	365,6	5,86	9,02	0,43

Наиболее оптимальными показателями для проведения кислотной обработки катодных осадков являются: концентрация серной кислоты 165,4 г/дм³, при этом достигаются следующие показатели (в среднем по результатам двух опытов): 20,93% общих примесей удаляется из катодного осадка, извлечение меди составляет 48,79% извлечение свинца составляет 3,65%.

На основании результатов исследований произведен расчет содержания благородных металлов в слитках золота лигатурного, после плавки кеков выщелачивания. За основу взяты следующие положения: извлечение благородных металлов при плавке с флюсами в слиток: 99,98%, неметаллические примеси, представленные в основном оксидом кремния, присутствующие в катодном осадке на 100% переходят в шлак, медь и свинец, находящиеся в кеках вы-

щелачивания на 100% переходят в слиток. Результаты расчетов представлены в табл. 3

Заключение. Основной целью проведения кислотного выщелачивания катодного осадка являлось удаление примесей, в основном, свинца и меди, т.к. именно эти металлы наиболее сильно препятствуют получению золота лигатурного высокого качества. Применение растворов серной кислоты способствует извлечению меди, около 50%, свинец же растворяется в весьма незначительных количествах. Массовая доля благородных металлов в слитке золота лигатурного повысилась на 20%. Кислотная обработка катодного осадка является новой технологией получения золота лигатурного и может применяться в промышленности для очистки от примесей и повышения качества готовой продукции.

Таблица 3

Расчет содержания благородных металлов в слитках золота лигатурного.

	Пополють			
До кислотис	ой обработки	После кислот	Параметр	
Массовая доля	Массовая доля	Массовая доля	Массовая доля	Концентрация
золота	серебра	золота	серебра	кислоты, г/дм ³
24,31	23,74	28,45	27,78	51,65
24,31	23,74	28,25	27,58	51,65
24,31	23,74	28,56	27,88	106,6
24,31	23,74	28,67	27,99	106,6
24,31	23,74	33,51	32,71	165,4
24,31	23,74	29,55	28,85	165,4
24,31	23,74	28,71	28,03	227,9
24,31	23,74	24,55	23,97	227,9
24,31	23,74	25,33	24,73	365,6

МЕДИЦИНСКИЕ ИНФОРМАЦИОННЫЕ СЕТИ И СИСТЕМЫ

Парахонский А.П., Медюха О.С. Кубанский медицинский институт, Краснодар, e-mail: para.path@mail.ru

Целью внедрения информационных технологий (ИТ) является создание информационных систем для анализа и принятия на их основе управленческих решений. Конкретным воплощением ИТ в основном выступают автоматизированные сети и системы, и лишь в этом случае принято говорить о компьютерных технологиях. Для современных ИТ характерны следующие возможности: сквозная информационная поддержка на всех этапах прохождения информации на основе интегрированных баз данных; безбумажный процесс обработки документов; возможности совместной работы на основе сетевых технологий, объединённых средствами коммуникации; возможности адаптивной перестройки форм и способа представления информации в процессе решения задачи. Эффективность управления зависит не только от имеющихся ресурсов, но и от чётко сформулированной реально достижимой цели, результаты которой оцениваются соответствующими показателями. Основной смысл этих процессов заключается в создании единого информационного пространства для всех пользователей информации: различных структур и служб медицинского образования и здравоохранения, органов управления и контроля, производителей медицинской техники и лекарственных средств, научно-исследова-тельских организаций, потребителей медицинских товаров и услуг. Это позволяет значительно интенсифицировать обмен информацией и скорость внедрения в повседневную деятельность последних достижений науки и практики, отвечающих задачам совершенствования и развития здравоохранения. Развитие ИТ и современных коммуникаций, появление в клиниках большого количества автоматизированных медицинских приборов, следящих систем и отдельных компьютеров привели к новому витку интереса, и к значительному росту числа медицинских информационных систем (МИС) лечебно-профилактических учереждений. Современная концепция МИС предполагает объединение электронных записей обольных с архивами медицинских изображений, финансовой информацией, данными мониторинга с медицинских приборов, результатами работы автоматизированных лабораторий, наличие современных средств обмена информацией: электронной внутрибольничной почты, Internet, видеоконференций. Следовательно, МИС - это совокупность программно-технических средств, баз данных и знаний, предназначенных для автоматизации процессов, протекающих в ЛПУ и системе здравоохранения. Целями создания МИС являются: создание единого информационного пространства, мониторинг и управление качеством медицинской помощи, повышения прозрачности деятельности медицинских учреждений и эффективности принимаемых управленческих решений, анализ экономических аспектов оказания медицинской помощи, сокращение сроков обследования и лечения пациентов. Внедрение медицинских информационных систем имеет положительный эффект для всех участников системы: для пациента, лечащего врача, для Департамента и Министерства здравоохранения.

ТЕХНИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА И СОВЕРШЕНСТВОВАНИЯ ОСНОВНЫХ РАБОЧИХ ОРГАНОВ ЗЕРНООЧИСТИТЕЛЬНЫХ МАШИН

Саитов В.Е.

Вятская ГСХА, Киров, e-mail: vicsait-valita@e-kirov.ru

В условиях рыночной экономики особое значение приобретают вопросы повышения качества и снижения затрат на послеуборочную