Химические науки

ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ СИСТЕМЫ $R-PBZRO_3-BITAO_4$

Евстифеев Е.Н., Савускан Т.Н.

Донской государственный технический университет, Ростов-на-Дону, e-mail: doc220649@mail.ru

Исследование растворимости соединений $PbA^{III}B^{IV}B^{V}O_{7}$ с кристаллической структурой типа пирохлора (A^{III} – редкоземельный элемент; B^{IV} – Ti, Zr, Hf, Sn; B^{V} – Ta, Nb), перспективных как новые сегнето- и пьезоэлектрики, в различных оксисолевых расплавах показало, что наилучшим из известных растворителей является расплав, состоящий из 50 % KF, 38 % PbO и 12 % $B_{2}O_{3}$ (R). Для детального исследования структурных и электрофизических свойств названных соединений необходимо иметь их монокристаллы.

C целью выявления возможности использования оксифторидного расплава $PbO-KF-B_2O_3$ для выращивания монокристаллов пирохлоров, а также для их синтеза в поликристаллическом состоянии, частично изучена система $R-PbZrO_3-BiTaO_4. \label{eq:constraint}$

Исследование проводили визуально-политермическим и рентгенофазовым методами. Частично использовали термографический метод, а также выращивание монокристаллов из раствора-расплава. Смеси плавили в платиновом тигле, температуру измеряли с помощью платина-платинородиевой термопары, откалиброванной по температурам плавления химически чистых солей и эвтектик.

Исходными материалами для синтеза ортотанталата висмута служили безводная окись тантала марки «х.ч.» и окись висмута марки «ч.д.а.». Цирконат свинца получен из PbO марки «х.ч.» и ZrO_2 марки «ч.д.а.». KF и B_2O_3 использовали марки «ч.д.а.».

Система $R-BiTaO_4$ представляет собой нестабильное сечение сложной шестерной взаимной оксифторидной системы K, Pb, B, Bi, Ta // F, O. При исследовании рентгенофазовым методом кристаллизующейся твердой фазы вместо ожидаемой фазы ортотанталата висмута $BiTaO_4$ из расплавов изученной части системы кристаллизуется новая фаза $KPbTa_2O_6F$ пирохлорной структуры с параметром решетки 10,560 Å. Тройное оксифторидное соединение $KPbTa_2O_6F$ является продуктом обменной реакции:

$$KF + \text{``Pb(BO_2)_2}\text{``} + 2BiTaO_4 \leftrightarrow$$

 $\leftrightarrow KPbTa_2O_6F + 2BiBO_3$

Из расплавов названного сечения соединение хорошо кристаллизуется, и составы, содер-

жащие 12–16% BiTaO $_4$, можно рекомендовать для выращивания монокристаллов KPbTa $_2$ O $_6$ F медленным охлаждением расплава от 1000 до 700°C.

Состав переходной точки: 2,6% BiTaO₄, температура плавления 692°C.

Система $R-PbZrO_3$, являющаяся нестабильным сечением пятерной взаимной системы K, Pb, B, Zr // F, O, представлена тремя ветвями кристаллизации: KF, PbO_2 и двойного калийциркониевого бората $K_2Zr(BO_3)_2$ в виде тонких бесцветных шестигранных пластин. Это значит, что при данном соотношении компонентов в системе имеет место реакция:

$$2KF + B_2O_3 + PbZrO_3 \leftrightarrow PbF_2 + K_2Zr(BO_3)_2$$

Состав и температура плавления переходных точек: 3,2 и 8,4% $PbZrO_3$, температура плавления 693 и 704°C соответственно.

Поверхность первичной кристаллизации системы $R-PbZrO_3-BiTaO_4$ на треугольник составов построена по данным названных и восьми внутренних сечений. Характеристика точек пересечения ветвей кристаллизации приведена в табл. 1.

Для выяснения природы фазы, кристаллизующейся из расплавов системы $R-PbZrO_3$ в виде мелких кристаллов желтого цвета, проведен рентгенофазовый анализ всех возможных соединений свинца с цирконием и бором: $PbZrO_3$, $PbZr(BO_3)_2$, $Pb_3Zr(BO_4)_2$ и PbF_2 . Сопоставление порошкограмм кристаллов, выращенных из расплавов при концентрации $PbZrO_3 < 8\%$ с порошкограммами синтезированных соединений показало, что искомой фазой является PbF_2 . Для идентификации второй фазы, соединение $K_2Zr(BO_3)_2$ было синтезировано методом твердофазных реакций. Рентгенофазовый анализ показал полную их идентичность.

Фаза PbBiZrTaO $_7$ имеет линии совместной кристаллизации со всеми фазами системы и является одной из равновесных твердых фаз всех трех тройных моновариантных точек, состав которых приведен в табл. 2.

Из составов, лежащих в границах поверхности кристаллизации PbBiZrTaO₇, хорошо кристаллизуется и их можно использовать для выращивания монокристаллов. Рентгенофазовый анализ монокристаллов, выращенных из состава 13(43PbZrO₃ + 57BiTaO₄) + 87R показал, что они имеют кубическую структуру пирохлора PbBiZrTaO_{7 с} одинаковым параметром элементарной ячейки, что указывает на отсутствие твердых растворов в пирохлорной области изученной части системы. Расплавы, нагретые до 1000°C, выдерживались при данной температуре в течение 1,5 часа до полного растворения исходных веществ, затем охлаждались до 850°C со

Таблица 1

Характеристика точек пересечения ветвей кристаллизации внутренних сечений системы $R-PbZrO_3-BiTaO_4$

	Исходный состав,%	Характеристика точек пересечения ветвей первичной кристаллизации			
Номер сечения		Добавляемый компонент и его содержание в характерной точке, %	Температура плавления характерных точек, °C	Равновесные твердые фазы	
1	$43 \text{ PbZrO}_3 + 57 \text{ BiTaO}_4$	95,8 R	702	KF + PbBiZrTaO ₇	
2	25 PbZrO ₃ + 75 BiTaO ₄	95,6 R	696	KF + PbBiZrTaO ₇	
3	70 PbZrO ₃ + 30 BiTaO ₄	95,4; 92,8 R	698; 708	KF + PbF ₂ ; PbF ₂ + PbBiZrTaO ₇	
4	90 R+ 10 BiTaO ₄	1,2 PbZrO ₃	752	KPbTa ₂ O ₆ F + PbBiZrTaO ₇	
5	90 R + 10 PbZrO ₃	2,4 BiTaO ₄	710	$K_2Zr(BO_3)_2 + PbBiZrTaO_7$	
6	95 R + 5 PbZrO ₃	2,2 BiTaO ₄	700	PbF ₂ + PbBiZrTaO ₇	
7	15 BiTaO ₄ + 85 PbZrO ₃	96,2; 91,2 R	694; 704	$KF + PbF_2$; $PbF_2 + K_2Zr(BO_3)_2$	
8	95 R+ 5 BiTaO ₄	1,0 PbZrO ₃	708	KPbTa ₂ O ₆ F + PbBiZrTaO ₇	
9	10 PbZrO ₃ + 90 BiTaO ₄	97,2 R	688	$KF + KPbTa_2O_6F$	

Таблица 2 Характеристика моновариантных точек системы R – PbZrO₃ – BiTaO₄

Обозначение точ-	Состав, %		Температура	D	
ки и ее характер	R	PbZrO ₃	BiTaO ₄	плавления, °С	Равновесные твердые фазы
А-переходная	95,2	0,8	4,0	682	KF + KPbTa ₂ O ₆ F + PbBiZrTaO ₇
В-переходная	94,8	3,5	1,7	690	$KF + PbF_2 + PbBiZrTaO_7$
С-переходная	91,2	7,0	1,8	698	$PbF_2 + K_2Zr(BO_3)_2 + PbBiZrTaO_7$

скоростью 50° /ч, от 850 до 800° С охлаждали со скоростью $6...8^{\circ}$ /ч, от 800 до 750° С — со скоростью $10...12^{\circ}$ /ч, от 750 до 700° С — со скоростью $18...20^{\circ}$ /ч. После охлаждения до 700° С расплав сливался, а кристаллы охлаждались в выключенной печи до комнатной температуры. Опыты

показали, что для получения больших и бездефектных кристаллов необходимо вести выращивание не в условиях постоянной линейной скорости снижения температуры, а в условиях увеличения скорости понижения температуры пропорционально растущему объему кристалла.

«Фундаментальные и прикладные проблемы медицины и биологии», OAЭ (Дубай), 16-23 октября 2012 г.

Биологические науки

РОЛЬ ИКСОДОВЫХ КЛЕЩЕЙ В ЭПИЗООТОЛОГИИ ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ В СРЕДНЕМ ПОВОЛЖЬЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Губейдуллина З.М., Губейдуллина А.Х.

Технологический институт, филиал ФГБОУ ВПО «Ульяновской УГСХА им. Столыпина», Димитровград, e-mail: tibuh@mail.ru

Территория Ульяновской области претерпевает трансформацию ландшафтов, в результате хозяйственного освоения, и эта проблема коснулась многих регионов Российской Федерации. Результатом таких изменений являются слож-

ные преобразовательные процессы в структурно – функциональной организации эволюционно сложившихся экологических систем, в том числе и паразитарных комплексов, формирующих природные очаги болезней человека.

Поэтому, целенаправленная сравнительная оценка происходящих изменений в пространстве и времени состояния основных компонентов, слагающих природные очаги инфекций (возбудитель — резервуар — переносчик) представляется весьма актуальной задачей для корректировки систем эпиднадзора и профилактики заболеваний в краевой инфекционной патологии населения Среднего Поволжья.