$$x_{i,i}^2 + y_{i,i}^2 + z_{i,i}^2 = R^2. (3)$$

Это уравнение имеет два корня и определяет, что искомый узел может находиться в одной из двух точек пересечения указанной выше окружности с поверхностью сферы. Очевидно, что эти точки, суть две противоположные вершины ячейки, положение одной из которых заведомо определено.

Произведем упрощения системы (2), раскрыв скобки и учитывая, что сумма квадратов координат каждого из узлов равна квадрату радиуса сферической поверхности с центром в начале координат (4). Это приводит систему к двум линейным уравнениям (4):

$$\begin{cases}
k_1 x_{i,j} + k_2 y_{i,j} + k_3 = 0 \\
m_1 x_{i,j} + m_2 z_{i,j} + m_3 = 0
\end{cases},$$
(4)

где, для упрощения введены коэффициенты, вычисляемые по формулам (5):

$$k_1 = x_{i-1,j} z_{i,j-1} - x_{i,j-1} z_{i-1,j}$$
; $m_1 = x_{i-1,j} - y_{i-1,j} k_1 / k_2$;

$$k_2 = y_{i-1,j} z_{i,j-1} - y_{i,j-1} z_{i-1,j}; m_2 = z_{i-1,j};$$
 (5)

$$k_3 = (h^2 / 2 - R^2) \cdot (z_{i,i-1} - z_{i-1,i});$$

$$m_3 = h^2 / 2 - R^2 - y_{i-1,i} k_3 / k_2$$

Переписав уравнения (4), в виде функций $Y_{i,j} = f(X_{i,j})$; $Z_{i,j} = f(X_{i,j})$ и, подставив их в уравнение (3), получим квадратное уравнение с одним неизвестным (6)

$$Ax_{i,i}^2 + 2Bx_{i,i} + C = 0. ag{6}$$

Здесь коэффициенты A, B и свободный член C введены для упрощения записи и вычисляются по формулам (7), с учетом (5).

$$A = 1 + \frac{k_1^2}{k_2^2} + \frac{m_1^2}{m_2^2}; \ B = \frac{k_1 k_3}{k_2^2} + \frac{m_1 m_3}{m_2^2}; \ C = \frac{k_3^2}{k_2^2} + \frac{m_3^2}{m_2^2} - R^2.$$
 (7)

Таким образом, для вычисления координат узлов сети Чебышева на сфере достаточно найти больший из корней $X_{i,j}$ уравнения (6) и подставляя его значение в уравнения (4) вычислить значения координат $Y_{i,j}$ и $Z_{i,j}$. Заметим, что в связи с симметрией достаточно вычислить координаты половины узлов, так как:

$$x_{i,j} = x_{j,i}$$
; $y_{i,j} = y_{j,i}$; $z_{i,j} = z_{j,i}$.

Полученные автором формулы, в качества эксперимента, были использованы для вычисления плоской развертки сферы. Форма вычислен-

ной развертки оказалась аналогичной развертке, построенной по методу Чебышева и описанной в целом ряде публикаций о кройке одежды [3].

Список литературы

- 1. Степанов С.Е. О кройке одежды по Чебышеву // Соровский образовательный журнал. №7 1988.
- 2. Чебышев П.Л. О кройке одежды. Сообщение на Association francaise par l'avancement des siencese в Париже 28 августа 1878 г. / Пер. с фр. Ф.Г. Попова // Полн. собр. соч., т. 5, АН СССР. М., 1951.
- 3. Болдовкина О.С., Матвеева Л.В. Проектирование одежды в чебышевских сетях [электронный ресурс] // Сайт цифровых учебно-методических материалов ВГУЭС. URL: http://abc.vvsu.ru/Books/l_shebysh/page0002.asp.

Физико-математические науки

ОСНОВЫ НЕКЛАССИЧЕСКОГО (ИНДИВИДУАЛЬНОГО) ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКОГО МЕТОДА ИССЛЕДОВАНИЙ

Романов В.П., Соколова Н.А.

ФГАОУ ВПО «Национальный исследовательский университет «МИЭТ», Москва, e-mail: romanov.valeri@gmail.com; sokolovanataliya@gmail.com

При проведении научных исследований широко применяются вероятностно-статистические методы. Различают классический (массовый) [1] и неклассический (индивидуальный) [2] вероятностно-статистические методы. Сравнительный анализ этих методов проведен в работе [3]. Рассмотрим особенности индивидуального вероятностно-статистического метода (ИВСМ).

Успешность деятельности человека зависит уровня развития его сознания. В [2] по-

казано, что детерминизм сознания человека и, соответственно, детерминизм его знаний об окружающем мире реализуются через случайность. Это обусловлено тем, что такие познавательные процессы, как ощущение, восприятие, память, мышление и воображение, входящие в структуру сознания, несут в себе элементы случайности, обусловленные внутренне присущим случайным характером психического и физического состояний индивида в процессе деятельности, принципиальной невоспроизводимостью в полном объеме психосоматического состояния индивида от эксперимента к эксперименту, а также физиологическим, психологическим и информационным шумами при работе головного мозга. Следовательно, для описания деятельности каждого отдельного человека необходимо использовать индивидуальный вероятностно-статистический метод.

Основы ИВСМ рассмотрим на примере описания поведения индивида в процессе обучения. В процессе усвоения знаний обучающийся движется в информационном пространстве. Однако указать точное положение обучающегося в информационном пространстве невозможно, можно говорить лишь о вероятности нахождения его в той или иной области пространства. В [4] впервые предложена вероятностно-статистическая модель поведения индивида в процессе усвоения знаний, которая получила дальнейшее развитие в работе [5]. В соответствии с этой моделью обучающийся идентифицируется функцией распределения (плотностью вероятности), определяющей вероятность нахождения его в единичной области информационного пространства. Используя закон сохранения вероятности, получена система дифференциальных уравнений, описывающая эволюцию функций распределения коллектива обучающихся в многомерном пространстве координат, скоростей, ускорений различных порядков и во времени.

В приближении аддитивности функций распределения получены дифференциальные уравнения, описывающие поведение индивидуальных функций распределения (функций распределения, относящихся к отдельным индивидам) в пространствах различного числа измерений и во времени. Эти уравнения представляют собой уравнения непрерывности, которые связывают изменение плотности вероятности за единицу времени в информационном пространстве координат и кинематических величин различных порядков с дивергенцией потока плотности вероятности. Найдено общее решение эволюции индивидуальных функций распределения в координатном пространстве и проведен анализ поведения этих функций в случае постоянной средней скорости. Методом Фурье получено аналитическое решение уравнения непрерывности для индивидуальных функций распределения, представляющих собой суперпозицию двумерных волн, распространяющихся в информационном пространстве координат и скоростей [6].

В работе [7] изложены основы вероятностно-статистического метода шкалирования, регламентирующего измерения и анализ экспериментальных функций распределения, которые включают три этапа: нахождение экспериментальных функций распределения по результатам контрольного мероприятия; расчет моментов индивидуальных функций распределения с целью их отображения на числовое пространство; ранжирование обучающихся по уровню знаний на основе сравнения моментов различных порядков их индивидуальных функций распределения. ИВСМ позволяет находить не только теоретические и экспериментальные функции распределения, описывающие поведение отдельных индивидов, но и осуществлять построение функций распределения, характеризующих поведение сколь-угодно больших коллективов.

В отличие от ИВСМ массовый вероятностно-статистический метод (МВСМ) применяется при изучении массовых явлений случайного характера. Он включает несколько этапов, основные из которых следующие: построение вероятностной модели реальности, исходя из анализа статистических данных (определение закона распределения случайной величины); проведение необходимых расчетов математическими средствами в рамках вероятностной модели; интерпретация вероятностно-статистических выводов применительно к реальной ситуации. В настоящее время МВСМ хорошо разработан и широко используется при проведении исследований в различных областях естественных, технических и общественных наук.

В заключение отметим, что отличительной особенностью индивидуального вероятностно-статистического метода исследований по сравнению массовым вероятностно-статистическим методом является учет внутренне присущего случайного характера поведения человека в процессе выполнения им той или иной деятельности.

Список литературы

- 1. Орлов А.И. Прикладная статистика: Учебник. М.: Изд-во «Экзамен», 2007. 672 с.
- 2. Романов В.П., Соколова Н.А. Вероятностно-статистический метод психолого-педагогических исследований. М.: Ладомир, 2012.-144 с.
- 3. Романов В.П., Соколова Н.А. Сравнительный анализ классического и неклассического вероятностно-статистических методов психолого-педагогических исследований // Международный журнал экспериментального образования. 2013. № 10. С. 42–46.
- 4. Романов В.П., Гордиевич Л.А., Золочевский Ю.Б. Альтернативная структура системы непрерывной подготовки высшими учебными заведениями специалистов высокой квалификации // Деп. в НИИВШ, 01.09.88, № 1389 – 88 деп.
- 5. Романов В.П., Соколова Н.А. Вероятностно-статистическая модель учащегося // Современные проблемы науки и образования. 2009. N 6 (Часть 3.). С. 122 129.
- 6. Романов В.П., Соколова Н.А. Аналитическое решение уравнения непрерывности, описывающего поведение учащегося в процессе обучения // Международный журнал прикладных и фундаментальных исследований. 2011. 8. 0.52 —
- 7. Романов В.П., Соколова Н.А. Вероятностно-статистическое шкалирование в педагогике // Современные проблемы науки и образования. 2010. N 2. C. 57-63.

ПРИМЕНЕНИЕ МЕТОДА МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ В ГЕОМЕТРИИ

Увалиева С.К.

КГУ им. Ш. Уалиханова, Кокшетау, e-mail: saltanatk u@mail.ru

Метод математической индукции есть особый метод математического доказательства, позволяющий на основании частных наблюдений делать заключения о соответствующих общих закономерностях. Метод математической индукции, по самому существу своему связанный с понятием числа, имеет наибольшее применение в арифметике, алгебре и теории чисел.