Но понятие целого числа является основным не только в теории чисел, специально занимающейся изучением его свойств, но и вообще во всей математике. Поэтому метод математической индукции применяется в самых разнообразных областях математики. В частности, особенно красивы различные применения этого метода в геометрии – им и посвящена данная статья.

Наиболее естественное применение метода математической индукции в геометрии, близкое к использованию этого метода в теории чисел и в алгебре, — это применение к решению задач на вычисление. Приведем пример решения залачи

Задача. Определить число N непересекающихся диагоналей, используемых при разбиении n-угольника на треугольники.

Решение. 1° Для треугольника (n=3) это число равно нулю (в треугольнике нельзя провести ни одной диагонали); для четырехугольника (n=4) это число равно, очевидно, единице. 2° Предположим, что мы уже знаем, что число непересекающихся диагоналей, используемых при разбиении k-угольника, где k<n, равно k-n (независимо от способа решения).

Рассмотрим одно из разбиений n—угольника $A_1A_2A_3...A_n$ (рис. 2) на треугольники. Пусть A_1A_k одна из диагоналей этого разбиения; она делит n-угольник $A_1A_2...A_n$ на k-угольник $A_1A_2...A_n$ на k-угольник $A_1A_2...A_n$. В силу сделанного предположения общее число N не пересекающихся диагоналей, используемых при разбиении n-угольника на треугольники, будет равно сумме непересекающихся диагоналей k-угольника — (k-3). Для (n-k+2)-угольника — (n-k+2)-3 и самой диагонали A_1A_k , т.е. N = k — -3 + (n-k + 2) — 3 + 1 = k — 3 + n-k + 2 — 3 + 1 = n — 3 , тем самым наше утверждение доказано для всех n.

Список литературы

1. Головина Л.И., Яглом И.М. Индукция в геометрии. – М.: Физматгиз, 1961.

ВЛИЯНИЕ ЭНТРОПИИ ПОСЛЕДОВАТЕЛЬНОСТИ ТЕКСТОВЫХ СИМВОЛОВ НА ПСИХОЭМОЦИОНАЛЬНОЕ СОСТОЯНИЕ ЧЕЛОВЕКА

Фадюшин С.Г., Лободенко А.С., Миляева Е.Е.

Дальневосточный федеральный университет, Bладивосток, e-mail: fadyushin.sg@dyfu.ru

Согласно К. Шеннону, «Энтропия есть статистический параметр, который измеряет в известном смысле среднее количество информации, приходящейся на одну букву языкового текста» [1]. Если символы в последовательности, составляющей текст, независимы, то энтропию можно рассчитать по следующей формуле:

$$H = -\sum_{i=1}^{n} p_i \log_2 p_i,$$

где H – энтропия множества вероятностей p_i ; p_i – вероятность символа i.

Величина H принимается в качестве меры количества информации и измеряется в битах на символ [2]. В проведённом исследовании изучалось влияние H на адресата, т.е. человека принимающего (читающего) заданную последовательность текстовых символов.

В качестве тестов использовались следующие последовательности из 100 букв русского языка, для которых рассчитывалась энтропия:

Первый тест. Последовательность, состоящая из одного символа: $A\ A\ A\ A\ A\ A\ A\ A\ A\ A...$ H=0 бит/символ.

Второй тест. Приближение нулевого порядка (символы независимы и равновероятны) [2] в виде последовательности букв, выбранных случайным образом: ЯКСВУРИОАЦ... H = 4,179 бит/символ.

Третий тест. Последовательность, состоящая из равного количества всех букв русского алфавита в случайном порядке: Ё Й Ц У К Е Н Г Ш Щ... H = 5,044 бит/символ.

Психоэмоциональное состояние адресата определялось путём анализа оценочных параметров кожно-гальванической реакции (КГР), которые измерялись с помощью двухканального аппаратно-программного комплекса «Дианел 11S-iON» [3]. Этот метод нашёл широкое применение во многих областях исследований, связанных с изучением и оценкой человеческого фактора [4].

В данной работе использовались следующие оценочные параметры КГР, объяснение которых и методику расчёта можно найти в [5]:

1. КГР-активность:

$$CA = \frac{\sum a_i}{T_a} 60,$$

где СА – КГР-активность, сНп/мин; a_i – амплитуда активации, сНп (приращение активации за і-ю реакцию); T_a – время тестирования, с.

Величина КГР-активности получается как сумма амплитуд фазических КГР за время Т_а, приведенных к 1-й мин. Данный параметр можно использовать как интегральный показатель динамических процессов энерготрат, т. е. как своеобразную оценку психофизиологических затрат на регуляцию психофизиологического и психоэмоционального состояний человека.

- 2. Время фазы активации t_i , с.
- 3. Время фазы релаксации t_i , с.
- 4. Амплитуда активации a_i , с H_{Π} .
- 5. Амплитуда релаксации $a_{,i}$ сНп. Показывает уменьшение активации после релаксации в i-й реакции.
 - 6. Средняя скорость активации:

$$V_i = \frac{a_i}{t_i} 60,$$

где V_i — средняя скорость активации, сHп/мин (характеризует «мощность» реагирования в i-й реакции).

7. Средняя скорость релаксации:

$$-V_i = \frac{-a_i}{-t_i} 60,$$

где V_i — средняя скорость релаксации, сНп/мин (характеризует интенсивность восстановительных процессов в коже).

Результаты тестирования представлены в таблице.

Результаты тестирования

Оценочный	Первый тест		Второй тест		Третий тест	
параметр КГР	Левый	Правый	Левый	Правый	Левый	Правый
	канал	канал	канал	канал	канал	канал
КГР-	48,35	50,7	42,37	51,47	43,53	52,97
активность						
Время актива- ции	1,61	1,19	2,36	2,16	4,04	2,02
Время релак- сации	2,87	2,40	1,69	4,0	5,96	3,58
Амплитуда активации	4,34	3,67	5,47	5,88	8,03	5,70
Амплитуда релаксации	6,62	5,41	6,80	7,23	9,04	6,87
Скорость активации	2,93	3,43	2,62	3,06	2,25	3,52
Скорость ре- лаксации	2,43	2,59	1,64	1,99	1,61	1,90

Примечание. В таблице наименования левого и правого канала имеют условное значение.

Сравнительный анализ полученных данных, представленных в таблице, позволил сделать следующие выводы.

С увеличением энтропии последовательности текстовых символов (букв русского алфавита) возрастает КГР-активность по одному из каналов передачи сигналов электрокожного сопротивления. В настоящей работе этому выводу по условиям тестирования соответствует правый канал. Кроме того, увеличение энтропии последовательности текстовых символов приводит к увеличению времени, амплитуды и скорости активации и релаксации по левому каналу.

Таким образом, возрастание энтропии последовательности текстовых символов (букв русского алфавита) приводит к увеличению основных оценочных параметров КГР по определённым каналам. Следовательно, энтропия последовательности текстовых символов влияет на психоэмоциональное состояние человека.

Полученные результаты можно использовать для разработки методики создания вы-

сокоинформативных текстовых сообщений и исследования влияния этих сообщений на психоэмоциональное состояние человека.

Исследование выполнено при поддержке Программы «Научный фонд» ДВФУ. Мы выражаем благодарность руководству Дальневосточного федерального университета за финансовую поддержку (Грант по проекту # 12-08-13013-17).

Список литературы

- 1. Shannon C., Prediction and entropy of printed English, BSTJ, N 1 (1951), 50.
- 2. Shannon C.E. A Mathematical Theory of Communication // Bell System Technical Journal, vol. 27: 379-423, 623-656, 1948.
- 3. «Дианел 11S-iON» для оценки психофизиологического состояния. www.nelian.ru/shop/index. php?productID=669. Дата обращения $28.03.2014~\rm r.$
- 4. Fadyushin S.G. The Linear Assessment Model for Navigational Factors // World Applied Sciences Journal 29 (5): 689-693, 2014.
- 5. Суходоев В.В. Методическое обеспечение измерений, анализа и применения параметров кожно-гальванических реакций человека // Проблемность в профессиональной деятельности: Сб. статей М.: «Издательство института психологии РАН», 1999. С. 303-328.