РАЗРАБОТКА ВИРТУАЛЬНЫХ ЛАБОРАТОРНЫХ РАБОТ ПО ТЕХНИЧЕСКИМ ДИСЦИПЛИНАМ

Ретинская И.В., Дауренбеков К.К., Рахметова А.Ж.

Российский государственный университет нефти и газа имени И.М. Губкина; Кызылординский государственный университет им. Коркыт Ата, e-mail: dkuan@mail.ru

Современные энерготехнологические системы требуют от специалиста глубокого понимания законов и принципов действия теплового оборудования, встроенного в эти системы. Только достаточно высокий уровень общетеплотехнической подготовки позволит специалисту решать задачи по созданию современных экономически выгодных тепловых установок и находить пути повышения их энергетической эффективности. Данная статья рассматиривает образца разработки виртуальных лабораторных работ по дисциплине термодинамие. Адаптивные обучающие системы настраиваются в зависимости от возможностей обучающегося, что позволяет реализовать принцип индивидуализации [2]. Эта система позволяет повысить эффективность процесса обучения. В состав этой системы входят электронные лекции, семинарские занятия, промежуточные и итоговые тесты и виртуальные лаборатории такие как «Исследование процесса истечения воздуха из суживающегося сопла» и «Первой закон термодинамики». Виртуальные лабораторные работы разработаны в среде Microsoft Visual Studio 2005.

Обучающиеся во время выполнения лабораторных работ имитируют работу с реальными установками и приборами. Результаты выполнения лабораторных работ (показания приборов) сохраняются в текстовом файле. Затем обучающиеся выполняют обработку результатов измерения по полученным данным в соответствии с методическими указаниями, прилагаемыми в руководстве к лабораторным работам. Эта обработка может выполняться в любом доступном математическом пакете, в Excel и даже на обычном калькуляторе. Обучающимся не предоставляются полные образцы обработки результатов лабораторных работ, так как в соответствии с дидактическими требованиями они должны слелать это самостоятельно.

Виртуальные лабораторные работы включают в себя справочные материалы в виде текстового сопровождения как ко всему процессу выполнения лабораторных работ, так и к отдельным лабораторным установкам. Кроме того, в работу включены модули динамической визуализации приема лабораторных работ со звуковым сопровождением как помощь обучающимся, снятые с помощью программы Camtasia 3.0 от фирмы TechSmit.

Первая лабораторная работа по курсу посвящена экспериментальному исследованию адиабатического процесса истечения газа из суживающегося сопла. Она заключается в построении по опытным данным зависимости линейной и массовой скоростей газа в выходном сечении суживающегося сопла от отношения давлений в выходном и входном сечениях сопла; а также в определении параметров критического режима истечения и коэффициентов скорости и расхода. Обучающийся на экране компьютера после запуска насоса нажатием соответствующей кнопки может регулировать степень открытия вентиля. Все измерения производятся при стационарном режиме истечения, то есть, когда параметры потока газа в любом сечении во времени не меняются. В процессе опыта на каждом режиме дифференциальными манометрами замеряются перепады давления. Расход газа измеряется с помощью мерной шайбы диаметром $d_{\text{...}} = 5 \text{ мм}$, коэффициент расхода мерной шайбы $\mu_{_{\text{III}}} = 0,95$. С помощью вентиля устанавливают расход газа и производят все необходимые измерения [1]. В процессе эксперимента исследуются 6 различных режимов. Обработка опытных данных производится следующим образом [3]:

- 1. Надо определить расход газа G_{π} , абсолютные давления потока в выходном сечении сопла p_2 и в камере за соплом $p_{\rm cp}$, отношение давлений β , действительную массовую скорость истечения $u_{2\pi}$, действительную линейную скорость истечения $c_{2\pi}$.
- 2. Строится график зависимости $u_{2\pi}$, $c_{2\pi}$ и P_2 от соотношений давления β . По этому графику находится критическое отношение давлений $\beta_{\rm кp}$ и определяется критическое давление $P_{\rm kp}$, которое устанавливается в выходном сечении сопла в момент достижения максимальной массовой скорости.
- 3. Сравниваются критические отношения давлений, полученных из опытных данных, с теоретическими, вычисляемыми для идеального газа по уравнению критического соотношения давлений $\beta_{\rm kp}$ и рассчитывается теоретическая линейная скорость истечения c_2 при $\beta > \beta_{\rm kp}$.
- 4. Определяется коэффициент скорости φ и расхода μ.

Целью лабораторной работы по первому началу термодинамики является определение с помощью уравнения первого закона термодинамики количества теплоты, отдаваемого в окружающую среду в условиях лабораторной установки. Вся термодинамическая система, представленная на рисунок, делится на два участка (две подсистемы): первый участок — от входного сечения I до сечения IIа, а второй — от сечения IIа до сечения II. Каждый из этих участков заключается в свою контрольную оболочку (на схеме показаны пунктирной линией) [4].

В результате подведенного тепла, воздух, проходя от сечения I-I, где его температура

равна температуре окружающей среды $t_1 = t_{\rm oxp}$, нагревается до температуры $t_{\rm 2a}$, которая измеряется термопарой 6 в комплекте с вторичным прибором. Для определения мощности, подведенной к электродвигателю компрессора, служит панель 8 «Работа компрессора» с раз-

мещенными на ней амперметром и вольтметром. Мощность, расходованная на нагрев горизонтального участка трубы 5, определяется по показаниям вольтметра и амперметра, расположенных на панели 10 «Нагрев трубы». Представлен протокол наблюдения [4].

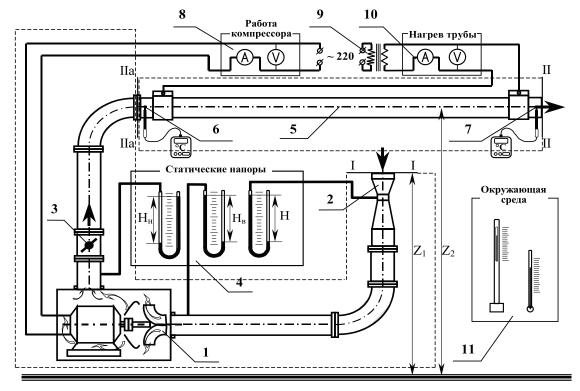


Схема установки

Задание для данной лабораторной работы определяется следующими расчетными параметрами.

1. Атмосферное давление находится с учетом температурного расширения столбика ртути барометра по формуле:

$$P_{\text{atm}} = \frac{B \cdot 10^2}{1 + 1,815 \cdot 10^{-4} \cdot t_{\text{opp}}}, \, \text{Ta.}$$

2. Перепад давления воздуха в воздухомере:

$$\Delta P = \rho \cdot g \cdot H$$
, Πa ,

где ρ — плотность воды в U-образном вакуумметре, равная 1000 кг/м^3 ; g — ускорение свободного падения, равное 9.81 м/c^2 ; H — показание вакуумметра («горло») воздухомера, nepesedenhoe в $m \ sod.cm$.

3. Плотность воздуха по состоянию в «горле» воздухомера:

$$\rho_{\scriptscriptstyle B} = \frac{(P_{\scriptscriptstyle \rm ATM} - \Delta P)}{R \cdot (t_{\scriptscriptstyle \rm I} + 273)}, \, _{\rm K\Gamma}/_{\rm M}^3,$$

где R — характеристическая газовая постоянная воздуха, равная 287 Дж/кг. °К.

4. Расход воздуха:

$$G = 0.525 \cdot 10^{-3} \cdot \sqrt{\rho_{\scriptscriptstyle B} \cdot \Delta P}$$
, kg/c.

5. Абсолютное давление в сечении на выходе из компрессора и на входе в горизонтальную трубу:

$$P_{\scriptscriptstyle 2a} = P_{\scriptscriptstyle \rm atm} + \rho \cdot g \cdot H_{\scriptscriptstyle \rm H} \,,$$

где $H_{_{\rm H}}$ — показание пьезометра (после компрессора), $\underline{nepeeedehhoe}$ в m bod.cm.

6. Плотность воздуха на выходе из компрессора и на входе в горизонтальную трубу:

$$\rho_{2a} = \frac{P_{2a}}{R \cdot (t_{2a} + 273)}, \kappa_{\Gamma}/M^3,$$

где t_{2a} — температура воздуха на выходе из компрессора и на входе в горизонтальную трубу (сечение IIa), °C.

7. Плотность воздуха на выходе из трубы:

$$\rho_2 = \frac{P_{\text{atm}}}{R \cdot (t_2 + 273)}, \text{ KG/M}^3,$$

где t_2 – температура воздуха на выходе из трубы (сечение II), °С.

8. Значение энтальпии воздуха h, в сечениях I, IIа и II определяется по общему уравнению

$$h_j = c_p \cdot t_j$$
, кДж/кг,

где $c_{\rm p}$ — теплоемкость воздуха при постоянном давлении, которая может быть принята не зависящей от температуры и равной 1,006 кДж/(кг·°С); $t_{\rm j}$ — температура в рассматриваемом сечении, °С; j — индекс рассматриваемого сечения (I, IIа или II).

9. Средняя скорость потока W_{j} в сечениях IIа и II определяется по общему уравнению

$$W_j = \frac{G}{(\rho_j \cdot F)}, \,_{\text{M/c}},$$

где F — площадь проходного сечения для потока воздуха, одинаковая для сечений IIa и II и равная $1,35\cdot 10^{-3}\,\mathrm{m}^2$; ρ_j — плотность воздуха в рассматриваемом сечении, кг/м³; j — индекс рассматриваемого сечения (IIa или II).

Скорость потока воздуха в сечении I (на входе в воздухомер из окружающей среды) должна быть принята равной $W_1=0$.

10. Изменение потенциальной энергии на участке I–IIa:

$$\Delta \Theta_{\text{пот}} = g \cdot (Z_{2a} - Z_1) \cdot 10^{-3}$$
, кДж/кг.

Так как в данной работе $(Z_{2a}-Z_1)=0,4$ м, то $\Delta \Im_{\text{пот}}=0,0039$ кДж/кг одинаково для всех опытов и сравнительно мало. Поэтому величиной этого слагаемого в уравнении (1) можно пренебречь.

11. Работа электрического тока $l_{_{91}}$ на I-м участке (подсистеме):

$$l_{\scriptscriptstyle 91} = rac{I_{\scriptscriptstyle \mathrm{K}} \cdot U_{\scriptscriptstyle \mathrm{K}}}{G} \cdot 10^{-3} \; \mathrm{кДж/кг},$$

где $I_{\rm k}$ – сила тока, потребляемая электродвигателем компрессора, а; $U_{\rm k}$ – напряжение, подаваемое на электродвигатель компрессора, в.

12. Работа электрического тока $l_{_{32}}$ на II-м участке (подсистеме):

$$l_{_{32}} = \frac{I_{_{\rm H}} \cdot U_{_{\rm H}}}{G} \cdot 10^{-3}$$
, кДж/кг,

где $I_{\scriptscriptstyle \rm H}$ – сила тока, потребляемая на нагрев трубы, а; $U_{\scriptscriptstyle \rm u}$ – напряжение, подаваемое на нагрев трубы.

Использование компьютерных технологий при выполнении лабораторных работ позволяет значительно расширить диапазон как качественных, так и количественных характеристик исследуемых процессов. Использование виртуальной лаборатории позволяет руководителю занятий ставить перед обучающимся индивидуальные задания по исследованию теплотехнических процессов.

Список литературы

1. Шотиди К.Х., Шпотаковский М.М.. Исследование процесса истечения из суживающегося сопла: методические указания к лабораторной работе по курсу «Теплотехника» (часть І Термодинамика). – М., 2003.

- 2. Дауренбеков К.К., Ретинская И.В., Шотиди К.Х. Адаптивная обучающая система по термодинамике // Телематика'2007: труды XV Всероссийской научно-методической конференции. СПб., 2007. С. 168–169.
- 3. Шотиди К.Х., Глущенко Н.Ю., Пригульский К.Г., Дауренбеков К.К. Разработка виртуальной лабораторной работы по исследованию процесса истечения из суживающегося сопла // Информационная среда ВУЗа XXI века: материалы Всероссийской научно-практической конференции. — Петрозаводск, 3—8 сентября 2007.
- 4. Дауренбеков К.К., Ретинская И.В. Разработка виртуальной лабораторной работы по определению изобарной емкости воздуха с помощью уравнении первого закона термодинамики // Использование информационных и инновационных технологий в системе непрерывного профессионального образования: материалы международной научно-практической конференции, посвященной 70-летию Кызылординского государственного университета имени Коркыт Ата на тему. Казахстан, г. Кызылорда, 1–3 ноября 2007 года. С. 187–191.

МЕТОДИЧЕСКАЯ РЕКОМЕНДАЦИЯ ПО СОСТАВЛЕНИЮ ПРОГРАММ С ИСПОЛЬЗОВАНИЕМ СВЕТОВОГО ДАТЧИКА (НА ПРИМЕРЕ РОБОТА MINDSTORMS NXT)

Серік М., Бакиев М.Н., Балгожина Г.Б.

Евразийский национальный университет им. Л.Н. Гумилева, Астана, e-mail: balgulmira@mail.ru

Целью работы является научить обучающихся составлению программ с использованием светового датчика.

Световой датчик NXT (*LightSensor*) — это бесконтактный выключатель. Можно использовать как для оценивания уровня освещенности, так и для различения цветов.

Блок «Датчик освещенности» предназначен для управления работой лампы (рис. 1).

Рис. 1. Блок «Датчик освещенности»

Блок «Датчик освещенности» фиксирует рассеянный свет. С помощью шины данных он может передать текущее значение освещенности или логический сигнал (истина, ложь).

Рассмотрим Блок «Ламп». Лампа (рис. 2) подключается к NXT при помощи перходного кабеля.