УДК 629.584

РАЗВИТИЕ ПОДВОДНЫХ ЛАБОРАТОРИЙ

Чернышов Е.А., Романов А.Д., Романова Е.А.

Нижегородский государственный технический университет им. Р.Е. Алексеева, Нижний Новгород, e-mail: nil st@nntu.nnov.ru

В статье представлена история развития и современное состояние подводных лабораторий, приведены примеры реализации.

Ключевые слова: метод насыщенных погружений, подводная лаборатория, подводный дом, новые технологий

DEVELOPMENT OF UNDERWATER LABORATORIES

Chernyshov E.A., Romanov A.D., Romanova E.A.

The Nizhny Novgorod state technical university of R.E. Alekseev, Nizhny Novgorod, e-mail: nil st@nntu.nnov.ru

The history of development and current state of underwater laboratories is presented in article, realization examples are given.

Keywords: method of saturated immersions, underwater laboratory, underwater house, new technologies

Подводные лаборатории позволяют решить многие задачи: выявить взаимосвязи биологических процессов и их зависимость от физических и химических параметров среды, создать высокопродуктивные морские фермы по разведению рыб, крабов и моллюсков, плантации пищевых водорослей [1].

Основное преимущество подводной лаборатории заключается в том, чтобы при проведении подводных работ исключить для водолазов необходимую при каждом подъёме на поверхность длительную декомпрессию. Например, десять минут работы на глубине 180 метров требует семи часов декомпрессии. Но в начале 60х годов удалось установить, что для каждой глубины существует предел насыщения азотом тканев организма и сколь бы долго после момента насыщения водолаз не находился под водой на данной глубине, время декомпрессии не увеличится [2].

Первые спуски под воду «методом длительного пребывания» или «методом насыщенных погружений» проводились в различных странах с использованием подводных домов – лабораторий. Дж.Бонд по программе «Генезис», Эдвин А. Линк программа «Человек в море», Жак-Ив Кусто программа «Преконтинент». В частности, в качестве водолазного колокола и жилища-убежища на морском дне на глубине 61 м использовалась погружаемая барокамера-лифт из алюминия – «цилиндр Линка». В рамках программы «Человек в море» Роберт П. Стенюи пробыл 26 часов на глубине 61 м в кислородно-гелиевой среде с содержанием кислорода 6% и гелия 94%, осуществляя выходы в водную среду, после чего декомпрессия составила 65,5 часов.

Подводные лаборатории разработаны в двух принципиально отличных конструкций:

Давление в среде обитания равняется подводному давлению на той же глубине. Это делает вход и выход легкими, при этом декомпрессия при входе в лабораторию не требуется.

Внутреннее давление среды меньше чем окружающее давление или ближе к атмосферному давлению. Вход или выход к морю требуют прохождения через шлюзовую камеру и декомпрессию.

Изготовление полностью автономных подводных стационарных комплексов, не зависящих от обеспечения с поверхности, связано со значительными затратами и техническими сложностями, поэтому такие комплексы изготавливали только в единичных случаях.

Более распространенными являются стационарные комплексы, для непрерывного функционирования которых может осуществляться с обеспечивающего судна, специального буя или берега. Однако успешность обеспечения судном зависит от состояния погоды и таким образом делает использование стационарных подводных комплексов опасным в районах с неустойчивой погодой. Замена обеспечивающего судна специальным энергетическим буем решает задачу безопасности только частично, так как в свежую погоду обеспечение полностью зависит от устойчивости работы автоматических систем буя.

Во второй половине 1960-х – начале 1970-х годов в различных странах (Великобритании, США, СССР, Чехословакии, Кубе, Польше, Болгарии, ФРГ, ГДР, Италии и др.) было проведено большое количество экспериментов в подводных лабораториях,

обычно на глубине до 10-12 м с использованием для дыхания воздуха.

Характерными примерами являются:

Жак-Ив Кусто в 1962 году создал первый подводный дом «Преконтинент-1» (Precontinent), расположенный на глубине 10 метров. В состав проекта «Преконтинент-2» входило несколько подводных сооружений: основной дом-звезда на глубине 11 метров и расположенный, на глубине 27,5 метров дом «Ракета». «Преконтинент-3», был уже на 100-метровой глубине.

В 1964—1965 годах, под руководством Джорджа Бонда в США также проводили эксперименты по программе «Человек в море». «Силаб-1» (Sealab) был расположен на глубине 58,5 метров и рассчитан на четверых акванавтов. «Силаб-2» был установлен на глубине 61 метр и был рассчитан на 10 человек.

В 1969 году корпорацией «General Electric» по заданию Национального управления по аэронавтике и исследованию космического пространства (НАСА) США и министерства природных ресурсов США была изготовлена подводная лаборатория «Tektite».

Эксперимент «Иджер» (США, 1971 г.) был проведен на рекордной глубине 177 м. Используемый при эксперименте комплекс был сделан автономным и достаточно мореходным для того, чтобы его буксировать при волнении моря до 6 баллов [3].

Подводный комплекс «Гельголанд» (ФРГ, 1969) был рассчитан для работ на глубинах до 30 м. Поскольку он предназначен для работ в открытых частях Северного моря, при его создании была принята система обеспечения не с судов, а со специального энергобуя. Жилой отсек занимает менее трети длины корпуса, прочность его такова, что он способен выдерживать наружное давление 0,98 МПа. Эта особенность конструкции отсека позволяет водолазам проходить декомпрессию на дне, а по ее завершении всплывать на поверхность в водолазном снаряжении.

Подводный комплекс «La Chalupa Research Lab» также был построен вместе с энергетическим буем. Рассчитан он на обеспечение работы 4 водолазов на глубинах до 33 м. Обеспечение комплекса электроэнергией, пресной водой и сжатым воздухом осуществляется с надводного буя, который представляет собой корпус катера из стеклопластика длиной 11 м. В отсеках этого корпуса размещены дизель-генераторы (основной и резервный), дизелькомпрессора, радиостанция, соединенная кабелем с переговорным устройством подводного комплекса и др.

Магіпе Lab был разработан и построен как часть океанской программы в Военноморской академии США под руководством доктора Нила Т. Монни. В 1983 была пожертвована Морскому Фонду развития Ресурсов (MRDF), и в 1984 была развернута на ложе океана в Национальном парке Джона Пеннекампа Корэл Риф, Ки-Ларго, Флорида. Магіпе Lab также используется в качестве подводного отеля для туристов, если не в использовании для научных экспериментов.

В СССР также проводились подобные эксперименты [4-7]:

В 1966 Анатолий Майер, Всеволод Джус, Анатолий Игнатьев, Вениамин Мерлин и Владимир Бурнашев, при поддержке Ленинградского гидрометеорологического института и филиала Акустического института АН СССР в Сухуми, создали свой подводный дом «Садко»

Лабораторию «Ихтиандр» создали группа энтузиастов во главе с Александром Хаесом и Юрием Барацем при поддержке специалистов Института физиологии им. И.П. Павлова и Института эволюционной физиологии и биохимии им И.М. Сеченова.

Группа ученых во главе с Вячеславом Ястребовым и Павлом Боровиковым подготовила техническое задание на подводный дом-лабораторию «Черномор» для Института океанологии АН СССР. В 1968 году начались испытания и работа лаборатории в море.

Отдельно можно отметить подводный надувной дом-гидростат «Спрут». Оболочка гидростата состояла из трех слоев брезента и слоя прорезиненной алюминиевой ткани. При поддуве верхняя часть принимала сферическую форму, средняя — цилиндрическую, оканчивавшуюся плоским полом. Гидростат заключался в подкрепляющую сеть из пеньковой веревки, в оболочки были врезаны два иллюминатора [8].

«Спрут» в ряде случаев оказался экономически более выгодным, а зачастую единственно возможным вариантом подводной лаборатории, он оказался удобен для транспортировки и пригоден для многократной установки, в том числе и автоматической. Был подготовлен один из «Спрутов» для работы на дрейфующей станции «Северный полюс-23». Для проверки возможности эксплуатации «Спрута» в тропических зонах океана он был установлен на глубине 12 м в Индийском океане. Монтаж дома двумя водолазами с водолазного бота был выполнен за один час работы под водой.

Спрут-У участвовал в экспериментах с подводным домом «Черномор», в котором «Спруту» отводилась роль базы-убежища.

Спрут-У имел две оболочки, между которыми подавался воздух, регенерационную установку, иллюминаторы-блистеры, обеспечивавшие обзор на 180°. От «улавливающей» сетки отказались, были применены стропы.

Также были разработаны и другие «мягкие» аппараты разнообразной конструкции: сферические аппараты, каркасно-вантовые с компенсатором плавучести, и цельномягкие шитые, например, секторный вертикальный трехотсечный гидропневматическим гидростат, который был окружен мягкими тороидами, наполняемые водой, причем внешние тороидальные баллоны могли быть использованы для хранения пресной воды.

Технические параметры подводных лабораторий

Наименование	Глубина установ- ки, м	Объем, м ³	Дыхательная смесь	Форма корпуса, расположение отсеков
Силаб 1	58,5	70	80 % гелий, 13 % азот, 4 % кислород	Горизонтальный цилиндр, с проходными отсеками
Преконтинент 2 (звезда)	11	80	Воздух	Четырех лучевая звезда, 3 отсека не проходных
Преконтинент 2 (ракета)	27	13	50 % гелий, 40 % азот, 10 % кислород	Вертикальный цилиндр, двухэтажное
Преконтинент 3	100	100	97,5 % гелий, 25 % кислород	Сфера, двухэтажное
Черномор	Более 20	Более 55	Азотно-кислородные смеси	Горизонтальный цилиндр, 3 отсека
Ихтиандр 67	12	28	Воздух	3 секции
Садко 3	39	н/д	Воздух	Вертикальный цилиндр, 3 отсека
Спрут-У	Более 20	6	Воздух, азотно-кислородные смеси	Вертикальный цилиндр

Мощность обогревательной установки, Силаб $1-10\kappa B\tau$, Силаб $2-25\kappa B\tau$., Преконтинент $3-11\kappa B\tau$.

Подводные дома не смогли найти широкого применения при выполнении практических подводных работ в силу ряда серьезных недостатков. Стационарное размещение подводного дома на грунте не позволяет в случае необходимости быстро перенести дом с одного места на другое без участия специальных плавсредств (мощных плавкранов, буксиров и др.). Возникают проблемы оказания помощи акванавтам при заболеваниях и несчастных случаях, проблемы удаления мусора и продуктов жизнедеятельности.

Большое внимание уделяется теплообмену между домом и водой, из-за высокого давления и физических свойств искусственной атмосферы теплоизоляция быстро насыщается гелием и теряет свои свойства. С целью улучшения теплоизоляции применяют двойные стенки, между которыми циркулирует горячая вода. Опыты показали, что живущий в атмосфере с гелием человек сильно мерзнет. Гелий имеет гораздо большую теплопроводность, чем азот, и,

чтобы человек не ощущал холод, температура в доме должна быть от 28 до 38° С. Работая в холодной воде водолаз замерзает и по возвращении требуются энергичные меры для его согревания. С этой целью широко используются пресные горячие души и инфракрасные печи. Кроме того необходим подогрев гелиевых дыхательных смесей для работающих снаружи водолазов.

Но самое главное — это точное регулирование состава атмосферы дома и надежная работа систем удаления примесей. При выходе их из строя акванавты могут погибнуть и от кислородного отравления, и от кислородного голодания, и от отравления вредными примесями. Сложность поддержания заданного состава смеси заключается в том, что расход кислорода в доме изменяется довольно значительно в зависимости от того, сколько человек в данный момент находится в доме, работают они или отдыхают и т. д. Система должна измерять количество кислорода в смеси и пополнять его по мере необходимости.

Параллельно со стационарными подводными лабораториями разрабатывались мобильные варианты, например: научно-исследовательская подводная лодка «Северянка» и подводная база-лаборатория пр.1840, спасательная подводная лодка пр. 940; комплекс «Архипелаг» и «Селигер», состоящий из погружаемой капсулы и ПЛ-носителя; лаборатория «Бентос-300» и др.

В настоящее время наиболее известна лаборатория «AQUARIUS», которая используется для подготовки астронавтов NASA CIIIA [9-10]. Она находится состоит из трех частей: поддерживающий буй – Life Support Buoy (LSB), балластная плита, и непосредственно лаборатория. Сама лаборатория это стальной цилиндр диаметром 2,7 м, почти 13 м в длину, внутри жилые помещения и лаборатории, для работы шестерых обитателей. Недалеко от лаборатории две вспомогательные станции – Pinnacle и Gazebo, которые содержат карманы воздуха. Обычно давление внутри «AQUARIUS» поддерживается на уровне в 2,5 атм – это эквивалентно погружению на глубину 15 метров. Декомпрессия проводится прямо в лаборатории, всплытие имитируется изменением давления, которое постепенно понижается, в течение приблизительно 17 часов до тех пор, пока не будет достигнуто давление в одну атмосферу.

Назначение лаборатории – проведение экспедиций в условиях экстремальной окружающей среды, имитирующую работу с использованием системы подвесок (симулирование лунной и марсианской гравитации). Чтобы исследовать границы расположения центра тяжести для будущих конструкций, специалисты из проекта NASA по исследованию физиологии, систем и механизмов выхода в открытый космос (EVA Physiology, Systems and Performance Project), работающие вместе с экипажем и инженерами по тепловым системам, разработали трансформируемую заспинную подвеску со сменным центром тяжести.

В России в Ленинградской области построен подводный дом для дайверов. Он позволяет отрабатывать такие навыки, как вход и выход в подводные сооружения, тренировка для работ на промышленных подводных объектах, тренировка по остропке для подъема затонувших судов, осмотр опор мостов, трубопроводов и другие.

Архангельские конструкторы разрабатывают первый в стране подводный отель

для дайверов. Снабжение погружаемой барокамеры сжатым воздухом, электроэнергией, пресной водой, продуктами питания, питьевой водой, баллонами со сжатым воздухом будет осуществляться с берега или с баржи. Предполагаемое место установкиволизи коралловых рифов, недалеко от курортных городов. Бизнес-проект предусматривает как сдачу в аренду подводного дома для научных исследований, так и организацию экскурсий с подводными фото- и видеосъемками в течение одного или двух дней.

Заключение

Сложность эксплуатации и большие материальные затраты явились причиной сокращения строительства подводных стационарных комплексов. Их используют перспективно для тех работ и исследований, которые ведутся на ограниченных участках.

В настоящее время стационарные подводные дома находят применение лишь на малых глубинах с использованием в качестве газовой среды воздуха при выполнении локальных океанологических исследований, изучении биоресурсов в прибрежной зоне, для подготовки и тренировки космонавтов, а также в коммерческих целях для туристического бизнеса.

Однако продолжают разрабатываться проекты станций военного и коммерческого применения, например: подводные ракетные шахты и базы-башни из гидропневматических тороидов для сбора конкреций, добычи газа, нефти.

Список литературы

- 1. Улицкий Ю.А. Океан надежд: Освоение и использование богатств Мирового океана. М.: Просвещение, 1983. 191 с.
- 2. Жизнь под давлением. Метод длительного пребывания под давлением высокоэффективный метод выполнения водолазных работ / В.В. Смолин, Г.М. Соколов // DIVETEK 1[21] 2007. С.26-29
- 3. Боровиков П.А. Лаборатория на морском дне. Л.: Гидрометеоиздат, 1977. 136 с.
- 4. Обыкновенный подводный дом. Вокруг Света №02, 1974
- 5. Ихтиандры с мыса Тарханкут // Вокруг Света, №2, 1967
- 6. Брозин Г.-Ю. Атака на неизведанное. М.: Знание, 1977. 104 с.
- 7. Дерюгин К.К. Советские океанографические экспедиции. М.: Гидрометеоиздат, 1968. 235 с.
- 8. Гидростат «Спрут» подводный дом пневматической конструкции // Спортсмен подводник №21 с. 67 74
- 9. Черкашин С. Подводная лаборатория AQUARIUS последний из могикан? // Октопус №2 (02) 1998,
 - 10. Глубокий космос НЕМО // Октопус №1 (31). 2004.