ХИМИЧЕСКИЕ НАУКИ

УДК [541.123.6+536]:546.221

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ AG GES -AG SNS И НЕКОТОРЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ

¹Алиева З.М., ¹Алвердиев И.Д., ¹Юсибов Ю.А., ²Бабанлы М.Б.

¹Гянджинский государственный университет, Гянджа, e-mail: babanly_mb@rambler.ru; ²Бакинский государственный университет, Баку

Система $Ag_8GeS_6-Ag_8SnS_6$ изучена методами ДТА и РФА, а также измерением ЭДС с твердым электролитом Ag_3RbI_4 . Построены T-х фазовая диаграмма и соответствующие диаграммы «состав-свойство». Показано, что в системе образуются непрерывные ряды твердых растворов между обеими кристаллическими модификациями (низкотемпературная орторомбическая и высокотемпературная кубическая) исходных соединений. Зависимости параметров кристаллической решетки от состава практически линейны.

Ключевые слова: система Ag₈GeS₆-Ag₈SnS₆, фазовые равновесия, твердые растворы, термодинамические функции, полиморфное превращение, метод ЭДС

PHASE EQUILIBRIA IN THE AG₈GES₆-AG₈SNS₆SYSTEM AND SOME PROPERTIES OF SOLID SOLUTIONS

¹Aliyeva Z.M., ¹Alverdiyev I.J., ¹Yusibov Y.A., ²Babanly M.B.

¹Ganja State University, Ganja, e-mail: babanly_mb@rambler.ru; ²Baku State University, Baku

The $Ag_8GeS_6-Ag_8SnS_6$ system has been studied by using DTA and XRD methods and EMF measurements with the Ag_4RbI_5 solid electrolyte. The T-x phase diagram and corresponding diagrams composition-property were constructed. It is shown that the system is characterized by continuous solubility fields in the liquid state and also between both crystal modifications (low-temperature orthorhombic and high temperature cubic) of initial compounds. Concentration dependence of the lattice parameters is linear.

$Keywords: Ag_8 GeS_6 - Ag_8 SnS_6 \ system, \ phase \ equilibria, \ thermodynamic \ functions, \ polymorphic \ transformation, \ EMF method$

Халькогерманаты и халькостаннаты серебра относятся к числу перспективных функциональных материалов, обладающих полупроводниковыми, фотоэлектрическими и термоэлектрическими свойствами [1, 4, 7]. Для поиска новых многокомпонентных халькогенидов серебра с германием и оловом целесообразно исследование фазовых равновесий в соответствующих системах. Особый интерес представляют системы, включающие соединения-аналоги, так как в них можно ожидать образование широких областей твердых растворов

В данной работе представлены результаты исследования системы $Ag_8GeS_6-Ag_8SnS_6$.

Исходные соединения изученной системы изучены подробно.

А g_8 GeS₆ плавится с открытым максимумом при 1218К и претерпевает полиморфное превращение 496К [1, 5]. Низкотемпературная модификация A g_8 GeS₆ кристаллизуется в ромбической решетке (Пр.гр. Рna2₁) с параметрами *a*=15.149, *b*=7.476, *c*=10.589 Å [6], а высокотемпературная имеет кубическую структуру (Пр.гр. F-43m) с периодом решетки a=10.70 Å [8].

Соединение Ag₈SnS₆ также плавится конгруэнтно при 1125К [9]. Температура полиморфного превращения равна 444К [9]. Обе модификации Ag₈SnS₆ изоструктурны с соответствующими кристаллическими модификациями Ag₈GeS₆ и имеют следующие параметры решетки: *a*=15.298, *b*=7.548, *c*=10.699 Å [10], a=10.85 Å [8].

Материалы и методы исследования

Исходные соединения синтезировали сплавлением элементарных компонентов с чистотой не менее 99,999% в стехиометрических соотношениях в откачанных до ~10⁻²Па и запаянных кварцевых ампулах. Синтезы проводили в двухзонной наклонной печи. Нижнюю горячую зону нагревали до температуры на ~30-50⁰ выше точки плавления синтезируемого соединения, а холодную до 650К, что несколько ниже температуры кипения серы [2].

Индивидуальность синтезированных соединений контролировали методами ДТА и РФА. Синтезированные нами соединения имели следующие температуры полиморфных переходов и плавления: Ag_8GeS_6 (490; 1220K), Ag_8SnS_6 (445; 1120K), которые близки к вышеуказанным литературным данным.

Полученные порошковые рентгенограммы низкотемпературных модификаций соединений Ag₈GeS₆ и Ag₈SnS₆ были аналогичны с данными [6, 10]. В результате их расшифровки получены следующие параметры орторомбической решетки (Пр.гр. Pna2,):

Ag₈SnS₆ *a*=15,3338; *b*=7,5620; *c*=10,7244 Å

Сплавлением исходных соединений в различных соотношениях в вакуумированных кварцевых ампулах синтезировали сплавы системы Ag_8GeS_6 - Ag_8SnS_6 , которые для гомогенизации отжигались при 900К в течение 500 ч и охлаждались в режиме выключенной печи. Серия сплавов по разрезу Ag_8GeS_6 -

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ №5, 2014 Ag₈SnS₆ после отжига закалялись вбрасыванием ампул в холодную воду.

Исследования проводили методами ДТА (пирометр HTP-70, прибор Термоскан-2) и РФА (порошковый дифрактометр D8 ADVANCE фирмы Bruker, СиКα₁), а также измерением ЭДС концентрационных цепей типа

(-) Аg (тв) / Аg₄RbI₅(тв) / (Аg в сплаве) (тв) (+) (1)

В цепях типа (1) электролитом служил твердый суперионный проводник Ag_4RbI_5 , обладающий высокой ионной проводимостью уже при комнатной температуре [3]. Левым электродом служило металличе-

ское серебро, а правыми электродами – равновесные сплавы системы Ag_8GeS_6 - Ag_8SnS_6 с различными составами. ЭДС измеряли компенсационным методом с помощью цифрового вольтметра марки B7-34A в интервале температур 300÷390 К. Методики составления цепей типа (1) и измерений ЭДС описаны в [3].

Результаты исследования и их обсуждение

Результаты ДТА и измерений ЭДС равновесных сплавов системы Ag_8GeS_6 - Ag_8SnS_6 приведены в табл. 1.

Таблица 1

Состав, мол $%$ Ag ₈ SnS ₆	Термические эффекты, К	Е, мВ (300К)
$0 (Ag_8 GeS_6)$	495; 1220	225,7
10	490; 1214	-
20	480; 1190-1205	235,1
40	470-480; 1170-1190	245,3
60	455-470; 1150-1170	256,5
80	450; 1135	269,8
90	447; 1125	-
100	445; 1120	285,9

Результаты ДТА и измерений ЭДС сплавов системы Ag₈GeS₆-Ag₈SnS₆

Квазибинарная система $Ag_8GeS_6-Ag_8SnS_6$ (табл. 1, рис. 1) характеризуется образованием непрерывных рядов твердых растворов между обеими модификациями исходных соединений. Кривые ликвидуса и солидуса не имеют точек экстремума. На кривых полиморфного превращения $d' \leftrightarrow d$ также отсутствует точка экстремума.

Результаты РФА отожженных и медленно охлажденных сплавов показали, что

их дифракционные картины качественно аналогичны дифрактограммам низкотемпературных модификаций исходных соединений (рис. 2). С изменением состава происходит непрерывное смещение линий отражения между исходными соединениями. РФА сплавов, закаленных после отжига при 900К, показал, что они также однофазны и имеют кубическую структуру.

Рис. 1. Фазовая диаграмма системы $Ag_8GeS_6-Ag_8SnS_6$

46

Рис. 2. Порошковые дифрактограммы некоторых сплавов системы Ag₈GeS₆-Ag₈SnS₆

В табл. 2 приведены параметры кристаллических решеток твердых растворов на основе обеих модификаций соединений, а на рис. 1,б – изменение периода кубической решетки высокотемпературных твердых растворов с составом, которое подчиняется правилу Вегарда. Образование непрерывного ряда твердых растворов в системе Ag₈GeS₆-Ag₈SnS₆ между низкотемпературными модификациями подтверждено методом ЭДС (рис. 3,б). Значения ЭДС цепей типа (1) непрерывно меняются с изменением состава, что также свидетельствует об образовании непрерывного ряда твердых растворов между низкотемпературными модификациями исходных соединений.

Таблица 2Типы и параметры кристаллических решеток сплавов системы $Ag_8GeS_6-Ag_8SnS_6$

	Сингония, пространственная группа, параметры решетки, Å				
Состав, мол % Ag_8SnS_6	Комнатная температура			Закалка от 900К	
	орторомбическая, Рпа2,			кубическая, F-34m	
	a	b	с	а	
$0 (Ag_8 GeS_6)$	15,1292	7,4565	10,5535	10,705	
20	15,1777	7,4860	10,6071	10,736	
40	15,2159	7,5052	10,6346	10,764	
60	15,2299	7,5133	10,6440	10,797	
80	15,2718	7,5296	10,6790	10,826	
100	15,3338	7,5620	10,7244	10,858	

Рис. 3. Зависимость периода кристаллической решетки образцов, закаленных от 900К (а) и ЭДС концентрационных цепей типа (1) (б) от состава системы $Ag_{s}GeS_{6}$ - $Ag_{s}SnS_{6}$

Для проведения термодинамических расчетов результаты измерений ЭДС были обработаны в приближении их линейной температурной зависимости методом наименьших квадратов и представлены (табл. 3) в виде уравнений типа [3]: $E = a + bT \pm t \left[(S_E^2 / n) + S_b^2 \cdot (T - \overline{T})^2 \right]^{1/2}$

где n – число пар значений E и T; S_E^2 и S_b^2 – дисперсии отдельных измерений ЭДС и постоянной b; \overline{T} – средняя температура; t-критерий Стюдента. При доверительном интервале 95% и $n \ge 20$ критерий Стюдента t ≤ 2 [3].

Таблица 3

Температурные зависимости ЭДС цепей типа (1) для сплавов системы $Ag_8GeS_6-Ag_8SnS_6$ (T=300-390K)

Фаза	$E, mV = a + bT \pm 2S_E(T)$
Ag_8GeS_6	$190,3+0,118T \pm 2 \left[\frac{6,4}{30}+8,2\cdot 10^{-5}(T-345,2)^2\right]^{1/2}$
$\mathrm{Ag}_8\mathrm{Ge}_{0,8}\mathrm{Sn}_{0,2}\mathrm{S}_6$	$201,5+0,112T \pm 2\left[\frac{0,9}{22}+3,1\cdot10^{-5}(T-344,3)^{2}\right]^{1/2}$
$\mathrm{Ag}_{8}\mathrm{Ge}_{0,6}\mathrm{Sn}_{0,4}\mathrm{S}_{6}$	$208,1+0,124T \pm 2\left[\frac{1,3}{22}+4,5\cdot10^{-5}(T-343,7)^{2}\right]^{1/2}$
$\mathrm{Ag}_8\mathrm{Ge}_{0,4}\mathrm{Sn}_{0,6}\mathrm{S}_6$	$213,9+0,142T \pm 2\left[\frac{1,6}{22}+5,1\cdot10^{-5}(T-343,5)^{2}\right]^{1/2}$
$Ag_8Ge_{0,2}Sn_{0,8}S_6$	$229,3+0,135T \pm 2 \left[\frac{2,4}{22} + 7,5 \cdot 10^{-5} (T-344,1)^2\right]^{1/2}$
Ag_8SnS_6	$248,1+0,126T \pm 2\left[\frac{0,9}{22}+2,8\cdot10^{-5}(T-343,2)^{2}\right]^{1/2}$

Из данных табл. 3 по соотношениям

$$\Delta \overline{G}_{Ag} = -zFE; \qquad (3)$$

$$\Delta \overline{S}_{Ag} = zF \left(\frac{\partial E}{\partial T}\right)_{P} = zFb \qquad (5)$$

$$\Delta \overline{H}_{Ag} = -z \left[E + T \left(\frac{\partial E}{\partial T} \right)_{P} \right] = -z F a ; (4)$$

рассчитали парциальные молярные термодинамические функции серебра ($\Delta G, \Delta H, \Delta S$) в сплавах при 298 К (табл. 4).

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH №5, 2014

$Ag_8 Ocs_6 - Ag_8 Ons_6$ системинди эцмцшин 270 с. ди парсиал молиар функсииалары						
Фаза	$-\overline{\Delta G}_{Ag}$	$-\overline{H}_{AC}$	$\Delta \overline{S}_{ m Ag},$			
	$kC \cdot mol^{-1}$	11 Ag	$C \cdot mol^{-1} \cdot K^{-1}$			
Ag_8GeS_6	21,75±0,12	18,36±0,61	11,39±1,75			
$Ag_{8}Ge_{0,8}Sn_{0,2}S_{6}$	$22,66 \pm 0,06$	19,44±0,36	10,80±1,06			
$Ag_{8}Ge_{0,6}Sn_{0,4}S_{6}$	$23,64 \pm 0,08$	$20,08\pm 0,45$	11,96±1,29			
$Ag_{8}Ge_{0,4}Sn_{0,6}S_{6}$	$24,72\pm 0,09$	$20,64 \pm 0,47$	13,70±1,38			
$Ag_{8}Ge_{0,2}Sn_{0,8}S_{6}$	26,01±0,10	$22,12\pm0,58$	13,03±1,67			
Ag_8SnS_6	27,56±0,06	23,94±0,35	12,16±1,02			

Таблица 4 Ag.GeS.-Ag.SnS. системиндя эцмцицн 298К-дя парсиал молйар функсийалары

Кривые концентрационных зависимостей этих функций представлены на рис.4. Как видно, парциальные свободная энергия Гиббса и энтальпия серебра в сплавах являются монотонной функцией состава, что характерно для систем с непрерывными твердыми растворами замещения. Парциальная энтропия имеет несколько большую погрешность (вертикальные стрелки на рис. 4), поэ-

тому трудно точно определить характер концентрационной зависимости этой функции. Однако ее непрерывное изменение с составом не вызывает сомнения. Таким образом, характер концентрационных зависимостей парциальных молярных функций серебра подтверждает отсутствие структурных превращений в твердых растворах Ag₈GeS₆-Ag₈SnS₆ при комнатной температуре.

Рис. 4. Зависимости парциальных молярных функций серебра в системе Ag₈GeS₆-Ag₈SnS₆ (T=298K)

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ №5, 2014

Заключение

Квазитройная система Ag_8GeS_6 -Ag_8SnS₆ характеризуется образованием непрерывных рядов твердых растворов как между высокотемпературными кубическими, так и межу низкотемпературными орторомбическими модификациями соединений Ag_8GeS_6 и Ag_8SnS_6 . Парциальные термодинамические функции серебра в сплавах Ag_8GeS_6 -Ag_8SnS₆, вычисленные из данных измерений ЭДС подтверждают образование непрерывных твердых растворов при комнатной температуре.

Список литературы

1. Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. – Баку: БГУ, 1993. – 342 с.

2. Эмсли Дж. Элементы / Пер. с англ. – М.: Мир, 1993. – С. 256.

3. Babanly M.B., Yusibov Y.A., Babanly N.B. The EMF method with solid-state electrolyte in the thermodynamic

investigation of ternary Copper and Silver Chalcogenides / Electromotive force and measurement in Several systems. Ed.S. Kara. Intechweb.Org, 2011, pp.57-78. (ISBN 978-953-307-728-4).

4. Belandria E., Fernandez B.J. Temperature Dependence of the Optical Absorption of the Ternary Compound Ag2SnS3 // Jpn.App.Phys, 2000, v.39, p.293-295.

5. Chbani N., Cai X., Loireau Lozach A.M., Guiltard M. Ternaire argent-germanium-sulfure, quasibinaire disulfure de germanium-sulfure d'argent. conductivite electrique du verre le plus riche en argent // Mater. Res. Bull., 1992, v.27, pp. 1355–1361.

6. Eulenberger G. Die Kristallstruktur der Tieftemperaturmodifikation von Ag8GeS6. Synthetischer Argyrodit // Monatsh. Chem., 1977, v.108, pp.901–913.

7. Fujikane M., Kurosaki K., Muta H., Yamanaka S. Thermoelectric properties of Ag8GeTe6 // J.All.Comp., 2005, 396, p.280-282

8. Gorochov O. Les composés Ag8MX6 (M= Si, Ge, Sn et X= S, Se, Te) // Bull. Soc. Chim. Fr., 1968, pp.2263–2275.

9. Wang N., Fan A.K. An experimental study of the Ag2S-SnS2 pseudobinary join // Neues Jahrb. Mineral., Abh., 1989, v.160, pp.33–36.

10. Wang N. New data for Ag8SnS6 (canfeildite) and Ag8GeS6 (argyrodite). // Neues Jahrb. Mineral., Monatsh., 1978, pp.269–272.