ХИМИЧЕСКИЕ НАУКИ

УДК 541.123.3:546.24

НЕКОТОРЫЕ ПОЛИТЕРМИЧЕСКИЕ СЕЧЕНИЯ ФАЗОВОЙ ДИАГРАММЫ СИСТЕМЫ TL-BI-TE

Джафаров Я.И., Имамалиева С.З., Бабанлы М.Б.

Бакинский государственный университет, Баку, e-mail: babanly mb@rambler.ru

Методами ДТА, РФА, а также измерением микротвердости и ЭДС концентрационных относительно таллиевого электрода цепей исследованы фазовые равновесия в системе Tl-Bi-Te по сечениям TITe-BiTe и TlBiTe,-Te(Bi). Построены их T-х диаграммы. Установлено образование твердых растворов Tl_{1-x}Bi_{1-x}Te₂(x=0÷0,22) по разрезу TITe-BiTe.

Ключевые слова: фазовая диаграмма, теллуриды таллия-висмута, твердые растворы, промежуточные фазы, политермические сечения

SEVERAL VERTICAL SECTIONS OF PHASE DIAGRAM OF TL-BI-TE SYSTEM

Jafarov Y.I., Imamaliyeva S.Z., Babanly M.B.

Baku State University, Baku, e-mail: babanly mb@rambler.ru

Phase equilibriums were established in the TITe-BiTe and TIBiTe₂-Te (Bi) vertical sections of TI-Bi-Te system mainly by the X-Ray powder diffraction and differential thermal analyses, with the aid of microhardness and EMF measurements concerning thallium electrode applied to equilibrated alloys. Their T-x diagrams are constructed. The formation of solid solutions $Tl_{1x}Bi_{1xx}Te_2$ (x=0÷0,22) in the section TITe-BiTe it was founded.

Keywords: phase diagram, tellurides thallium-bismuth, solid solutions, intermediate phases, vertical sections

Теллуриды таллия-висмута являются перспективными функциональными материалами. Так, например Tl₉BiTe₆ и TlBiTe₂ демонстрируют высокие термоэлектрические показатели [9,10], TlBiTe₂ также является топологическим изолятором [8, 11].

Для разработки методик и оптимизации условий синтеза и выращивания кристаллов теллуридов таллия-висмута необходимы надежные данные по фазовым равновесиям в системе диаграммам Tl-Bi-Te. Поэтому весьма важно детальное изучение фазовых равновесий в системе Tl-Bi-Te.

Изучению системы Tl-Bi-Te посвящены многочисленные работы. Однако их результаты, как правило, не согласуются между собой, что не позволяет получить общую совместную картину фазовых равновесий в системе Tl-Bi-Te.

В работе [5] приведена фазовая диаграмма системы $Tl_2Te-Bi_2Te_3$ в области составов $Tl_9BiTe_6-Bi_2Te_3$, где наряду с конгруэнтно плавящимся соединением Tl_9BiTe_6 (833K) нашло отражение соединение $TlBiTe_2$, плавящееся с открытым максимумом при 848K.

В работах [7,10] изучен разрез Tl₂Te₃-Bi₂Te₃. Согласно [7] этот разрез квазибинарный и образует одно конгруэнтно плавящееся соединение TlBiTe₃ (873К). Согласно же [10] сплав состава TlBiTe₃ является двухфазным: TlBiTe₂+Te.

В [6] приведена диаграмма состояния разреза Tl-Bi₂Te₃, относящегося в квазибинарным системам с тремя промежуточными фазами.

Разрез ТІТе-ВіТе изучен в работе [14]. Показано, что фаза, представленная многими авторами как TIBiTe₂ имеет состав $Tl_{0.94}Bi_{1.06}Te_2$ и плавится инконгруэнтно при 777К. Обнаружена новая нестехиометрическая фаза $Tl_{1-y}Bi_{1+y}Te_2$ с конгруэнтным плавлением (810К) при y=0,2. Фаза $Tl_{1-y}Bi_{1+y}Te_2$ при температуре 688К разлагается по эвтектоидной реакции

$1,18Tl_{0.8}Bi_{1.2}Te_2 \ll Tl_{0.94}Bi_{1.06}Te_2 + 0,36 BiTe$

В [3] система Tl-Bi-Te исследована в области составов Tl₂Te-Bi₂Te₃-Te. Подтверждено образование конгруэнтно плавящихся соединений Tl₉BiTe₆ (830K) и TlBiTe₂ (830K), установлены области их существования. Существование тройного соединения TlBiTe₂ не подтверждено.

В [12] представлен новый, несколько отличающийся от данных [3,5] вариант фазовой диаграммы квазибинарной системы Tl₂Te-Bi₂Te₃. Согласно этой диаграмме соединение TlBiTe₂ плавится инконгруэнтно с разложением по перитектической реакции при 793К, и дистектический максимум (818К) соответствует другой тройной фазе Tl_{0.83}Bi_{1.06}Te₂. Также предполагается существование тройного соединения TlBi₇Te₁₁, устойчивого в интервале температур 584-774K.

В настоящей работе исследовано взаимодействие компонентов в системе Tl-Bi-Te по разрезам TlTe-BiTe и TlBiTe₂-Te(Bi). Соединения TlTe, BiTe плавятся инконгруэнтно при температурах 573 и 813К [1].

Материалы и методы исследования

Исследования проводили методами ДТА (пирометр HTP-70), РФА (D8 ADVANCE фирмы Bruker), измерением микротвердости (прибор ПМТ-3) и ЭДС концентрационных цепей типа

(-) Tl (тв.) | глицерин +KCl +TCl | (Tl-Bi-Te) (тв.) (+) (1)

в интервале температур 300-450К.

Сплавы синтезировали из особо чистых элементов в вакуумированных кварцевых ампулах при температуре 850К в течение 4 ч при непрерывном перемешивании. Для приведения сплавов в состояние, максимально близкое к равновесному, образцы подвергали гомогенизирующему отжигу в течение 600-800 ч при температуре на 20-30К ниже солидуса.

Результаты исследования и их обсуждение

Диаграмма состояния системы TlTe-BiTe, построенная методом ДTA, приведена на рис.1а. Как видно, система является неквазибинарной в силу инконгруэнтного характера плавления исходных компонентов и характеризуется образованием промежуточной фазы состава $Tl_{1,x}Bi_{1+x}Te_{2,x}$. Эта фаза плавится конгруэнтно (810К при x=0.1) и подвергается полиморфному превращению (при x=0; 0,1; 0,2 соответственно 785,780,775К).

В твердом состоянии разрез пересекает гетерогенные области и ТІТе+ү и ү+ β_2 (ү и β_2 -твердые растворы на основе ТІВіТе₂ и ВіТе). Области гомогенности ү- и β_2 -фаз при 300К составляют ~11 и ~3моль%.

Кривая ликвидуса состоит из трех ветвей, отвечающих первичной кристаллизации δ (Tl₅Te₃), $\gamma \dot{\mu} \beta_1$ (Bi₂Te₃)-фаз. В точках пересечения кривых ликвидуса происходит совместная кристаллизация фаз б+ү и ү'+β, (ү'-твердый раствор на основе высокотемпературной модификации TlBiTe₂). Совместная моновариантная кристаллизация γ' и β₁-фаз завершается при достижении перитектической горизонтали U_1 (L+ β_1 «Ві₄Te₅+ γ') при 810К. После нонвариантной реакции U, исчезает β,-фаза и система становится трёхфазной: L+ү'+Вi₄Te₅. При дальнейшем охлаждении происходит совместная кристаллизация фаз у' и Ві, Те, по моновариантной эвтектической реакции. Окончательная кристаллизация в области составов 65-95моль% ВіТе происходит по нонвариантной перитектической реакции U₂ (L+Bi₄Te₅ $\leftrightarrow \beta_2 + \gamma^5$) при 800K, в результате которой одновременно исчезает жидкость и Ві, Те, и система переходит в двухфазное состояние γ'+β,. Горизонтальная линия при 775К относится к полиморфному переходу $\gamma' \leftrightarrow \gamma$. Следует отметить, что на термограммах сплавов, содержащих 65-95моль% ВіТе, при температуре ~685К нами обнаружены слабые термические эффекты, которые не согласуются с построенной диаграммой состояния. Указанная

температура соответствует перитектическому равновесию $L+\beta_2 \leftrightarrow \gamma+\beta_3(Bi_2Te)$ и при дополнительном отжиге сплавов при 750К интенсивность этих термических эффектов уменьшается. Поэтому мы считаем, что эти термические эффекты связаны с неравновесностью сплавов.

Совместная моновариантная кристаллизация δ - и γ -фаз наблюдается в области составов 8-50 мол.% ВіТе. В области составов 0-50моль.%ВіТе окончательная кристаллизация происходит по нонвариантной реакции L+ δ \leftrightarrow TITe+ γ (535K) и система в твёрдом состоянии становится двухфазной: TITe+ γ .

Результаты измерений микровердости и ЭДС (рис. 1,6,в) подтверждают построенную диаграмму состояния. В области составов 50-61 мол.% ВіТе с увеличением содержания ВіТе значения микротвердости сначала монотонно увеличиваются, а, затем проходя через максимум, уменьшаются. Такая картина зависимости микротвердости от состава характерна для систем с промежуточной фазой переменного состава.

В этой области составов зависимости $E \sim f(x)$ также имеет монотонный характер, что подтверждает непрерывное изменение состава твердых растворов. Как видно из рис. 16, в двухфазных областях значения микротвердости и ЭДС остаются постоянными.

Анализ порошковых рентгенограмм сплавов $Tl_{1-X}Bi_{1+X}Te_2$ при x=0÷0,22 показывает, что эти сплавы гомогенны и рентгенограммы индицируются при $R\overline{3}m$ сингонии. При разных значениях х нами вычислены параметры кристаллической решетки:

при x=0, a=4,525(6); c=23,124(9)Å;

при х=0,1, а=4,518(7); с=23,052(8) Å;

при x=0,2, a=4,521(7); c=22,907(11) Å.

В силу инконгруэнтного характера плавления TlBiTe₂ разрезы TlBiTe₂-Te(Bi) также являются неквазибинарными.

Разрез TlBiTe₂-Te. Диаграмма состояния этого разреза (рис. 2,а) относится к эвтектическому типу. Эвтектика содержит 35 мол.%TlBiTe₂ и имеет температуру 610К. На основе TlBiTe₂ образуются незначительные области твердых растворов. Образование g-фазы происходит при температуре 805К по реакции L+g¢ \leftrightarrow g. Разрез является стабильным сечением тройной системы Tl-Bi-Te ниже солидуса. Наличие заметной растворимости на основе твердого TlBiTe₂ при высоких температурах приводит к отклонению пути кристаллизации расплавов, богатых TlBiTe₂ от прямой TlBiTe₃-Te.

Рис. 1. Диаграмма состояния системы TlTe-BiTe

Рис. 2. Диаграмма состояния (а), зависимость микротвердости и ЭДС концентрационных элементов (в) при 300К от состава системы TlBiTe,-Te

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ №5, 2014

	РФА	(рис.	3),	а так	же	зав	исимо-	МЫ	TlBiTe,-Te	подтверждают	ee	T-x	диа-
сти	$H_{u} \sim f(z)$	х) и Е	$\sim f(x)$	(рис.	2,	б,в)	систе-	грам	мму.	*			

Рис. 3. Порошковые дифрактограммы сплавов систем TlBiTe₂-Te(Bi): 1-Te; 2-50 мол.%TlBiTe₂+50 мол.%4Te; 3 -TlBiTe₂; 4-50мол.%TlBiTe₂+50 мол.%4Bi; 5-Bi

На порошковых рентгенограммах сплавов присутствуют только дифракционные линии TlBiTe₂ и Te (рис. 3), причем при изменении валового состава сплава значения q не меняются.

Как видно из рис. 2,6 микротвердости исходных компонентов остаются постоянными в двухфазных сплавах. Это указывает на постоянство состава сосуществующих фаз, а также на незначительность области гомогенности на основе исходных компонентов. Для значений ЭДС наблюдается аналогичная картина (рис. 2,в).

Разрез ТІВіТе₂-Ві (рис. 4,а) образует диаграмму состояния с эвтектическим равновесием. Эвтектика имеет состав 4 ат.% ТІВіТе₂ и кристаллизуется при 530К. Область гомогенности g-фазы по этому разрезу достигает ~3мол.%. Результаты РФА (рис. 3), измерения микротвердости (рис. 4,б) и ЭДС (рис. 4,в) подтверждают построенную диаграмму.

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH №5, 2014

Рис. 4. Диаграмма состояния (а), зависимость микротвердости (б) и ЭДС концентрационных элементов (в) при 300К от состава системы TlBiTe,-Bi

Список литературы

1. Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys. ASM International, 2010, 855p

2. Бабанлы М.Б., Ахмадьяр А., Кулиев А.А. Система Tl2Te-Bi2Te3-Te // Ж. Неорган. химии, 1985, т.30, №9, с.2356-2361.

3. Берг Л.Г., Абдульманов А.Г. Квазибинарная система Ві2Те3-ТІ9ВіТе6.// Изв. АН СССР, Неорган.материалы, 1970, Т.6, №12, с. 2192-2193.

4. Борисова Л.А., Ефремова М.В., Ахмедова Ф.И. Свойства сплавов ТІ-Ві-Те. // Ж. неорган. химии, 1963, т.8, №12, с.2700-2704

5. Борисова Л.А., Ефремова М.В., Власов В.В. Диаграмма состояния системы Tl2Te3-Bi2Te3 и свойства полученных сплавов // Докл. АН СССР, 1963, т.149, №1, с. 117-119. 6. Шевельков А.В. Химические аспекты создания термоэлектрических материалов // Успехи химии, 2008, т.77, №1, с. 3-21.

7. Chiang P.W., Gluck J.V. The Te-rich Region of the Bi-TI-Te System Bi2Te3-TI2Te3 and TIBiTe2-Te Sections.// J.Appl. Phys., 1967, v.38, №12, p.4671-4678.

8. Eremeev S.V., Landolt G., Aliyev Z.S., Babanly M.B., Amiraslanov I.R. et al. Atom-specifik spin mapping and buried topological states in a homologous series of topolifical insulators // Nature Commun. 3:635. Doi: 10.1038/ ncomms1638 (2012).

9. Gawel W., Zaleska E., Terpilowski J. Phase diagram for the Tl2Te-Bi2Te3 system // J.Thermal Analysis and Calorimetry, 1989, v.35, pp.59-68.

10. Pradel A., Tedenac J.- C., Brun G., Maurin M. Mise au point dans le ternaire Tl-Bi-Te. Existence de deux phases nonstoechiometriques de type TlBiTe2 // J. Sol. State Chem., 1982, v. 45, Issue 1, p. 99-111.