УДК 669.094.2

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВОССТАНОВЛЕНИЯ КРЕМНИЯ ИЗ ОКСИДА АЛЮМИНИЕМ

¹Сержанов Г.М., ¹Шевко В.М., ²Лавров Б.А., ¹Аманов Д.Д.

¹РГП на ПХВ «Южно-Казахстанский государственный университет им. М. Ауэзова», Шымкент, e-mail: sunstroke 91@mail.ru;

²Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург

В статье приводятся результаты термодинамического моделирования восстановления кремния алюминием из системы $3\mathrm{SiO}_2$ -nAl с использованием программного комплекса HSC-5.1 Chemistry, разработанного финской металлургической компанией «Outokumpu», основанного на принципе минимизации энергии Гиббса. Установлено, что в системе $3\mathrm{SiO}_2$ -4Al в температурном интервале $500\text{-}2500^\circ\mathrm{C}$ основными веществами являются Si, Al₂SiO₅, SiO₂, SiO₂, Al₂O₃, Al, Al₂O₅. Изменение давления от 0,01 МПа до 0,2 МПа в системе $3\mathrm{SiO}_2$ -4Al не оказывает существенного влияния на поведение кремния и алюминия. В системе $3\mathrm{SiO}_2$ -nAl увеличение п от 4 до 8 позволяет увеличить температуру полного перехода Si из SiO_2 от $500^\circ\mathrm{C}$ до $1000^\circ\mathrm{C}$. Определением оптимальных параметров процесса термодинамического моделирования установлено, что высокая степень образования элементного кремния может быть достигнута при $500-1000^\circ\mathrm{C}$ и n=4-8 кат.

Ключевые слова: оксид кремния, алюминий, восстановление, кремний, термодинамическое моделирование, оптимальные параметры процесса

THERMODYNAMIC MODELLING SILICON REDUCTION FROM SILICON OXIDE BY ALUMINIUM

¹Serzhanov G.M., ¹Shevko V.M., ²Lavrov B.A., ¹Amanov D.D.

¹South Kazakhstan State University named after M. Auezov, Shymkent, e-mail: sunstroke 91@mail.ru;

²St. Petersburg State Technological Institute (technical university), St.-Petersburg

The given article contains the research results of thermodynamic modelling Si reduction by aluminum from a system 3SiO_2 -nAl with use of a software package HSC-5.1 Chemistry developed by the Finnish metallurgical company «Outokumpu», based on a principle of the Gibbs energy minimization. It was established, that in the system 3SiO_2 -4Al in a temperature interval of $500\text{-}2500^\circ\text{C}$ basic substances are Si, $Al_2 \text{SiO}_3$, SiO_2 , SiO_2 , SiO_3 , SiO_3 , SiO_3 , SiO_3 , $\text{Al}_2 \text{O}_3$, Al, $Al_2 \text{O}_{\text{gass}}$). The change of pressure from 0,1 to 2 bar in the system 3SiO_2 -nAl allows not influence considerably on the Si and Al behavior. Increase of n from 4 to 8 in the system 3SiO_2 -nAl allows to increase a temperature of the full transition of silicon from SiO_2 from 500°C to 1000°C . At the determination of optimum parameters of the thermodynamic modelling process it was established, that high degree of the elemental silicon formation can be reached at $500\text{-}1300^\circ\text{C}$ and n = 4-8 kat.

Keywords: silicon oxide, aluminum, reduction, silicon, thermodynamic modelling, optimum parameters

Развитие солнечной энергетики в настоящее время является одной из важнейших задач, стоящих перед человечеством [2]. В связи с этим, в развитых странах мира, активно ведутся разработки экологически чистых преобразователей солнечной энергии в электрическую на основе особо чистого кремния. Мировой рост производства солнечных элементов составляет до 30% ежегодно. Однако развитие в этом направлении сдерживается высокой себестоимостью продукции на базе «солнечного» кремния по сравнению с традиционными источниками энергии [4].

В настоящее время имеется множество методов производства «солнечного» поликристаллического кремния. При всем разнообразии методов промышленное произ-

водство осуществляется по традиционному «Сименс-методу» или методами восстановления трихлорсилана [3]. Из известных нам процессов, предлагаемых в качестве альтернативы «Сименс-методу» [1], экологически чистых и экономичных проектов нет.

Нами предлагается получать кремний экологически чистым и безотходным металлотермическим методом, в котором в качестве основных сырьевых материалов используется мелкодисперсный высокочистый диоксид кремния (кварцевое стекло) и алюминиевая пудра. Процесс описывается суммарной экзотермической реакцией:

$$3SiO_2 + 4Al = 3Si + 2Al_2O_3, \qquad (1)$$

которая с термодинамической точки зрения возможна уже при температуре 373К (табл. 1).

Влияние температуры на $\Delta G_{\scriptscriptstyle T}(\kappa Дж)$ и $\Delta H_{\scriptscriptstyle T}(\kappa Дж)$ реакции (1)

Параметр	Температура, К								
	373	573	773	973	1173	1373	1573		
$\Delta G_{_T}$	-589,1	-572,3	-555,2	-534,9	-500,1	-476,7	-447,2		
$\Delta H_{_T}$	-619,9	-620,9	-623,0	-671,8	-678,7	-679,0	-678,3		

В настоящей статье приводятся результаты термодинамического моделирования восстановления кремния алюминием из SiO₂ в системах 3SiO₂-nAl (n=4–8).

Цель исследования — термодинамическое моделирование взаимодействия SiO_2 с алюминием в темперутурном интервале от $500-2500^{\circ}$ С и давлении 0,1 МПа.

Материалы и методы исследования

Исследования проводились при помощи программного комплекса HSC-5.1 Chemistry разработанного Outokumpu Research Oy (Финляндия [6]). Разработчики комплекса основывались на идеологии консорциума SGTE (Scientific Group Thermodata Europe), которая занимается созданием, поддержкой и распространением высококачественных баз данных, предназначенных для расчета равновесного состава химически реагирующих систем; объединение усилий исследователей разных стран с целью унификации термодинамических данных и методов их получения. В состав SGTE входят специализированные научные центры Германии, Канады, Франции, Швеции, Великобритании и США (www.sgte.org). В нашей работе мы использовали подпрограмму Equilibrium Compositions комплекса HSC-5.1 для расчета равновесия на основе принципа минимума энергии Гиббса исходя из выражения:

$$G(x) = \sum_{a=1}^{f} \sum_{j=1}^{ia} X_j (C_j + \ln\left(\frac{X_j}{Xa}\right) + \ln\gamma_j) \rightarrow G(x)_{min}, (2)$$

при ограничениях в виде системы линейных уравнений баланса массы вещества:

$$\sum_{i=1}^{m} a_{ij} X_{j} = b_{i}, \tag{3}$$

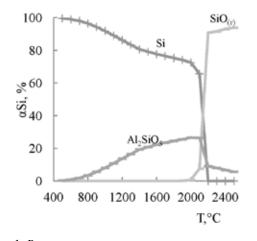
и условии нормировки:

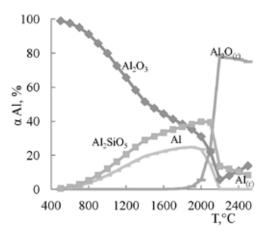
$$\sum_{i=1}^{La} X_j = Xa,$$
 (4)

где f — общее число фаз системы; B_i — общее число независимого компонента i в системе; j_a — масса чисел, показывающих число -тых независимых компонентов в фазе а системы; n — число независимых компонентов системы; C_j — эмпирическая термодинамическая функция; X_a — общее число молей фазы а в

системе;
$$\frac{X_j}{X_a}$$
 — мольная доля зависимого j компонента в фазе a ; Y_y — коэффициент активности j компонента. Параметры равновесия термодинамической систе-

в фазе *а*; *Y_y* – коэффициент активности *j* компонента. Параметры равновесия термодинамической системы определяются решением математической задачи о нахождении экстремума с учетом всех ограничений с использованием функций Лангранжа и метода последовательных приближений Ньютона.


При работе с комплексом HSC - 5.1 первоначальная информация представлялась в виде количественного (кг) распределения веществ в исследуемой системе. Затем определялась равновесная степень элемента (α ,%) по продуктам взаимодействия. Для этого расчеты проводили по формуле


$$\alpha_{\text{эл}} = \left[G_{\text{эл(прол)}} / G_{\text{эл(исх)}} \right] 100, \tag{5}$$

где $G_{_{\mathfrak{M}(\text{писх})}}$ — масса элемента в исходной системе, кг; $G_{_{\mathfrak{M}(\text{прод})}}$ —масса элемента в образующемся продукте, кг

Результаты исследования и их обсуждение

В системе $3\mathrm{SiO_2}$ -4Al в температурном интервале 500–2500°C основными веществами являются Si, $\mathrm{Al_2SiO_5}$, $\mathrm{SiO_2}$, $\mathrm{SiO_{(r)}}$, $\mathrm{Al_2O_3}$, $\mathrm{Al_1}$, $\mathrm{Al_2O_{(r)}}$ (рис. 1).

 $Puc.\ 1.\ B$ лияние температуры на степень распределения кремния и алюминия в системе $3SiO_2$ -4Al

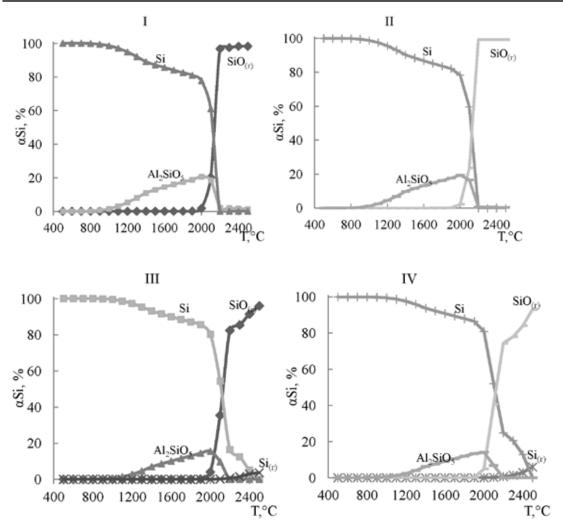


Рис. 2. Влияние температуры и количества AI на степень распределения кремния a_{SI} в системе $3SiO_2$ -nAI: $I-n=4,6;\ II-n=6;\ III-n=7,4;\ IV-n=8$

При 400° С с термодинамической точки зрения SiO_2 полностью взаимодействует с алюминием. При увеличении температуры степень восстановления кремния уменьшается и образование Si прекращается при $T \geq 2200^{\circ}$ С. Ввиду образования в степени Al_2SiO_5 , взаимодействие (например при 1000° С) происходит по схеме:

$$3Si+2Al_2O_3 =$$

=2,7Si+0,3Al_SiO_5+1,5A_2O_3+0,4Al (6)

При 2200°С кремний в системе исчезает и продуктами взаимодействия являются Al, Al $_2$ O $_3$, SiO, Al $_2$ O $_3$, Al $_2$ SiO $_5$, Al $_2$ O $_5$. Процесс описывается уравнением:

$$2,7Si + 0,3Al_{2}SiO_{5} + 1,5Al_{2}O_{3} + 0,4Al =$$

$$= 2,4SiO_{(r)} + 0,3Si + 0,3Al_{2}SiO_{5} +$$

$$+1,5Al_{2}O_{(r)} + 0,2Al_{2}O_{3}.$$
(7)

Из рис. 2 следует, что изменение в системе n от 4 до 8 приводит к увеличению температурной области полного восстановления кремния. Так, при n=4 полный переход кремния из SiO₂ в Si наблюдается при 500°C (затем степень образования Si уменьшается), а при n=8 эта область расширяется до 1000°C.

На рис. 3 приведена информация о распределении алюминия в системе $3{\rm SiO}_2$ -nAl из которой следует, что при увеличении в системе алюминия наблюдается накапливание его, что является неблагоприятным для последующего разделения кремния от алюминия.

Исследование влияния давления на систему 3SiO_2 -4Al показало, что увеличение давления в системе 3SiO_2 -4Al от 0,01 МПа до 0,2 МПа не оказывает существенного влияния на поведение кремния, за исключением лишь того, что при 0,01 МПа элементный кремний существует до 2300°C , а при 0,2 МПа – до 1900°C (рис. 4).

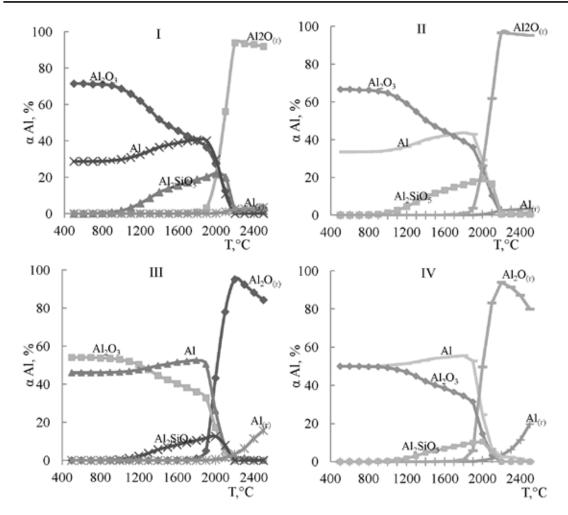


Рис. 3. Влияние температуры и количества алюминия на степень распределения алюминия (a_{A}) в системе $3SiO_{2}$ -nAl: $I-n=4,6;\ II-n=6;\ III-n=7,4;\ IV-n=8$

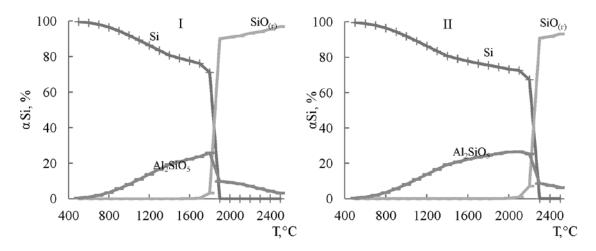


Рис. 4. Влияние температуры и давления на степень распределения кремния в системе $3SiO_2$ -4Al: $I-p=0,01~M\Pi a~II-p=0,2~M\Pi a$

Определение оптимальных технологических параметров восстановления кремния в системе $3\mathrm{SiO}_2$ -nAl определялось посредством рототабельного планирования исследовании второго порядка, с получением адекватного уравнения регрессии и графической оптимизацией процесса посредством горизонтальных разрезов поверхности отклика — α_{Si} [5]. Независимыми переменными являлись температура (кодированный — X1, натуральный — T, °C), количество алюминия (кодированный вид — X2, натуральный — n, кат).

В табл. 2 приведена матрица планирования исследований по определению влияния температуры и количества алюминия на α_{si} .

На основании данных табл. 2 получены следующее адекватное уравнение регрессии в натуральном виде:

$$\begin{array}{l} \alpha_{\text{Si}} = & 107,549 - 0.02184 \cdot \text{T} + 0,00307 \cdot \text{n} + \\ + & 0,0039 \cdot \text{T} \cdot \text{n} - 0,00000551 \cdot \text{T}^2 - 0,1882 \cdot \text{n}^2 \end{array} \tag{8}$$

Используя уравнения регрессии (8) по программе Mathcad построена поверхность отклика и ее горизонтальные сечения (рис. 5). Из рис. 5 следует, что высокая степень образования кремния (\geq 97%) может быть достигнута в области ABCDEF, т.е. при $500-1000^{\circ}$ C и n = 4-8 кат).

Цифры на линиях – степень образования кремния, %.

Таблица 2 Матрица планирования исследований по взаимодействию SiO_2 и алюминия

№ π/π		Факт	Эксп. (α_{si} , %) X_1	Расч. (α_{Si} , %)		
	Кодированный вид				Натуральный вид	
	$X_{_1}$	Χ,	T	n	X_1	Λ_2
1	2	3	4	5	6	7
1	-	-	616,3	1	99,5	99,06
2	+	-	1183,7	4,6	91,5	91,21
3	-	+	616,3	7,4	99,3	99,46
4	+	+	1183,7	7,4	97,5	97,81
5	+1,41	0	1300	6	93,5	93,45
6	-1,41	0	500	6	100	100,16
7	0	+1,41	900	8	99,8	99,43
8	0	-1,41	900	4	94	94,48
9	0	0	900	6	97,8	97,7
10	0	0	900	6	97,6	97,7
11	0	0	900	6	98	97,7
12	0	0	900	6	97,4	97,7
13	0	0	900	6	97,7	97,7

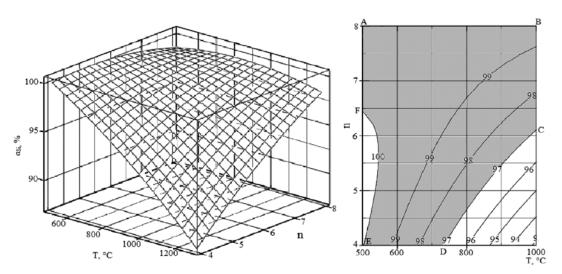


Рис. 5. Влияние количества алюминия и температуры на форму поверхности отклика (степени образования элементного кремния) и её горизонтальные сечения

Заключение

Таким образом, проведенные исследования позволили установить, что:

- В системе $3 SiO_2$ -4Al при 400° С SiO_2 полностью взаимодействует с алюминием образуя кремний и Al_2O_3 ; при увеличении температуры в системе образуются Al_2SiO_3 , SiO_4 , SiO_4 , Al_2O_4 .

 Al_2SiO_5 , SiO_2 , $SiO_{(p)}$, Al, $Al_2O_{(p)}$.

— В системе $3SiO_2$ -nAl увеличение п от 4 до 8 позволяет увеличить температуру полного перехода Si из SiO_2 от 500° С до

1000 C.

- Изменение давления в системе 3SiO₂-4Al не оказывает существенного влияния на поведение кремния и алюминия.
- Найдено, что степень образования кремния на уровне 97–100% может

быть достигнута в температурной области 500 – 1000°С и количестве алюминия 4-8 кат.

Список литературы

- 1. Аньшаков А.С., Урбах Э.К.. Чистый солнечный кремний // Наука из первых рук. 2010. Т 33 № 3. С. 40-41.
- 2. Грибов Б.Н., Зиновьев К.В.. Получение высокочистого кремния для солнечных элементов // Неорганические материалы. -2003.
- 3. Немчинова К.В., Вельский С.С., Красин Б.А.. Высокочистый металлургический кремний как базовый элемент для солнечной энергетики // Успехи современного естествознания. 2006.
- 4. Немчикова Н.В., Клец В.Э., Непомнящих А.И.. Кремний в XXI веке // Фундаментальные исследования. 2006.
- 5. Очков В.Ф. Mathcad 14 для студентов, инженеров и конструкторов. СПб.: БХВ-Петербург, 2007.
- Roine A., Outokumpu HSC Chemistry for Windows. Chemical Reaction and Eguilibrium loftware with Extensive Thermochemical Database. Pori: Outokumpu Research OY. 2002.