УДК 574.64

ИССЛЕДОВАНИЕ СОДЕРЖАНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ВОДЕ ВОДОЕМОВ УРАЛО-КАСПИЙСКОГО БАССЕЙНА. СЕВЕРО – ВОСТОЧНЫЙ КАСПИЙ

Тулемисова Г.Б., Амангосова А.Г., Абдинов Р.Ш.

Атырауский государственный университет имени Х. Досмухамедова, Атырау, e-mail: tulemisova62@mail.ru

В статье приводятся результаты исследований Северо – восточного Каспия на содержание тяжелых металлов в воде. Установлена сезонная динамика содержания тяжелых металлов в воде Северо-восточного Каспия. Определено, что в паводковый период увеличиваются поступления этих токсикантов в водоемы.

Ключевые слова: Урало-Каспийский бассейн, токсикант, тяжелые металлы, атомная абсорбция

RESEARCH OF WATER IN THE RESERVOIRS OF THE URAL-CASPIAN BASIN TO THE CONTENT OF HEAVY METALS. THE NORTH-EAST CASPIAN

Tulemisova G.B., Amangosova A.G., Abdinov R.S.

Atyrau State H.Dosmukhamedov University, Atyrau, e-mail: tulemisova62@mail.ru

The articles demonstrates the results of research onconcemtration of heavy metals in the water bodies of the North-east Caspian. Established seasonal dynamics of heavy metals in the water of the North-east Caspian. During the flooding period the increase of inflow of these toxic agents is detected.

Keywords: The Ural-Caspian Basin, toxic agents, heavy metals, the atomic absorption

В настоящее время значительно обострились проблемы, связанные с использованием водных и биологических ресурсов. Ухудшение водного режима и снижение биологической продуктивности рыбохозяйственных водоемов может быть связано с антропогенными воздействиями [1]. Проблема загрязнения природной среды, в том числе и водоемов, остается одной из наиболее актуальной в современном индустриальном обществе, а вопросы, связанные с миграцией тяжелых металлов в окружающей среде занимают существенное место.

Цель исследования — Оценка токсикологического состояния pp. Урал, Кигач и Северо-восточного Каспия.

Материалы и методы исследования

Токсикологические исследования проводились весной, летом и осенью 2015 г. Отборы проб воды для анализа содержания металлов производились на 16 станциях, 6 из них расположены в дельте р. Урал, 5 — на р. Кигач (восточные рукава дельты Волги) на 6-ти станциях обследована Северо-восточная часть Каспия.

Содержания тяжелых металлов определялось на атомно-абсорбционном спектрометре «МГА-915» методом с электротермической атомизацией в графитовой кювете. Предварительная проба подготовка проводилась по методике для определения тяжелых металлов в природных водах с использованием микроволновой системы на Минатавре-2. Дозировка подготовленной пробы составляла 20 мкл.

Результаты исследования и их обсуждение

Содержание тяжелых металлов верхних и нижних течениях р. Урал осенью 2015г. было изучено определением их в пробах отобранных из р. Урал на границе г. Уральска с РФ и в середине, в конце реки в пределах г. Уральска и на станций «Университет» водоема в г. Атырау. Результаты анализов приведены в табл. 1. По данным исследования нужно отметить о снижении концентраций хрома по сравнению с весенним периодом этого года с 1,26 ПДК до 0,45 ПДК. Однако, как отмечено в работе [2] в 2011 г. содержание хрома было намного ниже ПДК.

Таблица Содержание тяжелых металлов в верхних и нижних течениях р. Урал, осенью

Точка отбора проб	Содержание	Содержание	Содержание	Содержание	Содержание
	хрома (Сг),	кобальта (Со),	меди(Си),	кадмия (Cd),	свинца (Pb),
	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л
Р. Урал, г. Уральск граница с РФ	1,24	1,674	2,24	0,042	13,37
Р. Урал, г. Уральск, середина	1,19	0,581	0,60	0,070	6,72
Р. Урал, г. Уральск, конец	2,53	0,466	0,85	0,088	5,42
Р. Урал, г. Атырау, Университет	2,26	0,217	1,18	0,105	10,49
ПДК, мкг/л	10	10	1	5	10

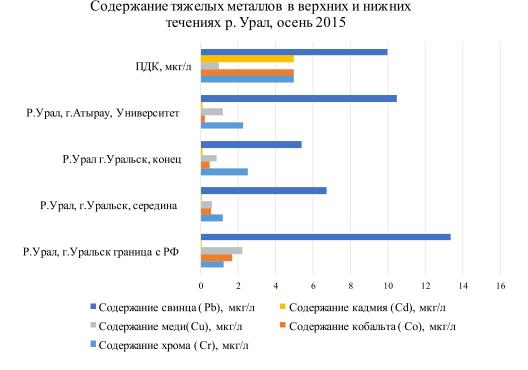


Рис.1. Содержания тяжелых металлов в р. Урал осенью в различных течениях

Осенние исследования дают основание делать выводы о поступлениях соединений хрома в г.Атырау из верхних течений в пределах г. Уральска, так как на границе с РФ его содержание составляет 0,24 ПДК. Из токсичных металлов в паводок было повышено содержание меди — 7,7 ПДК. Осенью на границе с РФ концентрация составило 2,2 ПДК, в пределах Атырау — 1,1 ПДК (рис. 1).

В реке Урал в повышенных концентрациях встречается и свинец. Если его содержание весной составляло 1,93 ПДК, то осенью в г. Атырау было обнаружено в пределах — 1,04 ПДК, а в верховье реки Урал определены в концентрациях — 1,3 ПДК (табл. 1).

Состояние р. Кигач в осенний период были исследованы отбором проб в точках «Кудряшево», «Ново-лицевая» и «Птичий». Для сравнения также были отобраны пробы воды из р. Урал в этот период. В период паводка содержания токсикантов в р. Кигач характеризовалось как высокое. Превышение санитарных норм были по количеству меди и кадмия, остальные металлы находились в пределах ПДК, как и в ранних работах [3].

По сравнению с рекой Урал весной в р. Кигач экологическая обстановка напряженная. Осенью так же по количеству некоторых металлов значение выше, чем в р. Урал. Содержание меди, свинца и кобальта намного больше в р. Кигач, хотя по сравнению с весенним паводком концентрация уменьшилась (табл. 2, рис. 2).

Северо-восточный Каспий

Содержание тяжелых металлов в акватории Северо-Восточного Каспия в летний период изменялись в изученных пробах в пределах ПДК для рыбохозяйственного водоема. Превышение санитарных норм зафиксировано для меди (Си) в квадратах 12 в пределах 2,2 ПДК и кв.75 и 105 соответственно 1,2 и 2 ПДК (табл. 3). Увеличение содержания меди в квадратах предустьевого пространство можно объяснить, стоком из р. Урал, т.к. здесь превышение ПДК составляет 6,6 ПДК.

Следующим металлом, определенным в больших концентрациях, это свинец. Наи-больший уровень этого тяжелого металла в квадрате 12. Содержание хрома в воде не превышает ПДК, хотя самое максимальное значение в квадрате 78 (рис. 3).

Исследования, проведенные, в осенний период показали увеличение содержания меди в квадрате 12 и 25, по сравнению с летним периодом, значение поступления этого металла водоем в паводок видимо, не играет роль. Количество этого металла в остальных квадратах и в р. Урал в этот период значительно снизилась. В исследованных участках моря содержание свинца в кв 12 уменьшился ниже пределов ПДК, однако в кв 75,78,105 наблюдается рост концентраций этого металла. Содержание хрома во всех точках снизилась почти в 2 раза, а в квадрате 78 — 3,7 раза (табл. 4, рис. 4).

Таблица 2 Содержание тяжелых металлов в верхних и нижних течениях р. Кигач, осень

Точка отбора проб	Содержание	Содержание	Содержание Содержание		Содержание
	хрома (Сг),	кобальта (Со),	меди(Си),	кадмия (Cd),	свинца (Pb),
	мкг/л	мкг/л	мкг/л	мкг/л	мкг/л
Кигач, Птичий	0,65	0,278	0,88	0,046	5,66
Кигач, Новолицевая	0,68	0,073	не обнарж.	0,084	5,29
Кигач, Кудряшово	0,70	0,825	не обнарж.	0,107	2,89
Р. Урал, с-я Университет	0,62	0,170	не обнарж.	0,104	2,68
ПЛК. мкг/л	5	5	1	1	10

Содержание тяжелых металлов в верхних и нижних течениях р. Кигач, осень 2015

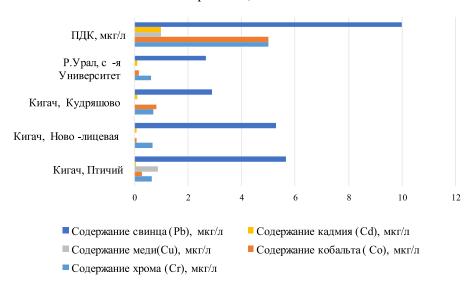


Рис. 2. Содержания тяжелых металлов в р. Кигач осенью в различных течениях

Данные по содержанию тяжелых металлов в летний период, мкг/дм 3

ПДК, речная вода Урал Кв. 105 Кв. 78 Кв. 75 Кв. 25

Ст Сd Ni Pb Сo Сu

Рис. 3. Содержания тяжелых металлов в акватории Северо-восточного Каспия

80

100

120

40

20

Кв. 12

Таблица 3 Данные по содержанию тяжелых металлов в летний период, $мкг/дм^3$

№ п/п	Точки отбора проб	Cu	Co	Pb	Ni	Cd	Cr
1	Кв. 12	12,1	0,410	78,55	2,422	0,053	2,200
2	Кв. 25	3,95	0,341	12,52	2,752	0,076	2,381
3	Кв. 75	7,19	0,124	8,10	1,566	0,371	1,499
4	Кв. 78	4,17	1,904	15,19	2,008	0,259	9,802
5	Кв. 105	10,62	0,178	19,23	2,031	0,057	1,596
6	Р. Урал	6,61	1,000	18,93	4,277	0,123	3,012
7	ПДК, морск. /речная вода	5/1	10/5	100/10	10/10	10/5	50/5

Таблица 4 Данные по содержанию тяжелых металлов в осенний период, мкг/дм 3

№ п/п	Точки отбора проб	Cu	Co	Pb	Mo	Cd	Cr
1	Кв. 12	19,50	0,647	4,611	0,706	1,540	1,15
2	Кв. 25	6,548	11,16	9,321	1,715	0,156	1,44
3	Кв. 26	0,316	0,945	1,712	0,586	0,009	1,103
4	Кв. 75	0,642	0,099	21,66	1,478	0,088	0,242
5	Кв. 78	1,782	0,222	39,83	1,377	0,040	2,906
6	Кв. 105	0,155	0,372	25,05	0,489	0,068	0,992
7	Урал	3,025	1,06	13,61	0,238	0,180	1,075
8	ПДК, морск. /речная вода	5/1	10/5	100/10	10/10	10/5	50/5

Данные по содержанию тяжелых металлов в осенний период, $m \kappa r / d m^{-3}$

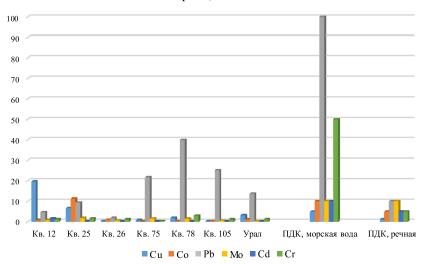


Рис. 4. Содержания тяжелых металлов в Северо-восточном Каспии осенью

Заключение

Содержание тяжелых металлов в исследованных водах водоемов Урало-Каспийского бассейна характеризуются значениями одного порядка. В целом, превышения ПДК зарегистрировано по металлам первой категорий опасности, таким как медь, свинец и хром. Таким образом, появление нового фактора в среде обитания осетровых рыб — загрязнения Каспия токсическими веществами — существенно сказывается на их благополучии [4].

Список литературы

1. Амиргалиев Н.А. Эколого-токсикологическое состояние Урало-Каспийского бассейна и некоторые приори-

тетные направления его исследования // Материалы Международной конференции «Современное состояние и пути совершенствования научных исследований в Каспийском бассейне». – Астрахань, 2006. – С. 21–25.

- 2. Канбетов А.Ш., Куанышева А.Г.Гидрологогидрохимический режим и токсико-логическое состояния реки Урал в 2011 году // Вестник АТГУ. Серия: Рыбное хозяйство. Водные ресурсы и их рациональное использования. – Астрахань, 2012. – № 2. – С. 41–45.
- 3. Демесинова Г.Т. Гидрохимическое и токсикологическое состояние Северного Каспия. // Сб. материалов Республиканской научно-практической конференции «Экологические проблемы и устойчивое развитие Западного Казахстана». Атырау, 2011. С. 61–64.
- 4. Гераскин П.П. Влияние загрязнения Каспийского моря на физиологическое состояние осетровых рыб // Известия Самарского научного центра Российской академии наук., Водные экосистемы. 2006. Т. 8, № 1. С. 273–282.