УДК 544.54

ФУРЬЕ ИК-СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ ТВЕРДОГО ОСАДКА РАДИАЦИОННО-ХИМИЧЕСКОГО ПРЕВРАЩЕНИЯ ФЕНОЛОВ В ВОДНЫХ РАСТВОРАХ

Кулиева У.А., Курбанов М.А., Гаджиева Н.Н., Меликова С.З.

Институт Радиационных Проблем НАНА, Баку, e-mail: ulviyegulieva13@gmail.com

Исследованы твердые осадки, образующихся при радиолизе водных растворов фенола, резорцина и гидрохинона, образующихся в результате реакции поликонденсации и образования твердых осадков фенолформальдегидной смолы, резорцин-формальдегидной смолы, олигомеры гидрохинона. Сравнительный анализ спектров фенола и двухатомных фенолов (резорцин, гидрохинон) показывает идентичность колебании группового характера.

Ключевые слова: Фурье-ИК-спектроскопия, твердые осадки, олигомеры гидрохинона, фенолформальдегидная смола, резорцин-формальдегидная смола

STUDY OF THE SOLID PRECIPITATION OF RADIATION-CHEMICAL TRANSFORMATION OF PHENOLS IN AQUEOUS SOLUTIONS BY FTIR SPECTROSCOPY

Gulieva U.A., Gurbanov M.A., Gadzhieva N.N., Malikova S.Z.

ANAS, Institute of Radiation Problems, Baku, e-mail: ulviyegulieval3@gmail.com

The solid precipitation formed during the radiolysis of aqueous solutions of phenol, resorcinol and hydroquinone, as the results of polycondensation reactions and the formation of solid precipitation of phenol-formaldehyde resins, resorcinol-formaldehyde resins – oligomers of hydroquinone have been investigated. Comparative analysis of spectra of phenol and dihydric phenols (resorcinol, hydroquinone) shows the identity of the group nature of the oscillation.

Keywords: FTIR spectroscopy, solid precipitation, oligomers of hydroquinone, phenol formaldehyde resin, resorcinolformaldehyde resin

Исследование процесса радиолитического превращения фенолов в водных растворах показало наличие двух каналов:

• Окисление фенолов с ОН- радикалами, образующихся при радиолизе воды;

• Конденсация ароматических ядер с образованием полимерных продуктов а также смол, образующихся в реакциях формальдегида с фенолами [2, 4, 7, 8].

Применялась Фурье-ИК-спектроскопия для исследования твердых остатков. При глубоком каталитическом окислении фенола обнаружено образование нерастворимых полимерных продуктов [8], при окислительном процессе фенола получены ИК-спектры твердых остатков[7], при электроокислении фенола получены ИКспектры пленок [4], которые совпадают с ИК-спектрами твердых остатков, обнаруженных в работе [7]. В ИК-спектре осадка после окисления фенола в электрохимическом процессе наблюдается интенсивная полоса поглощения в области 3350 см⁻¹, указывающая на образование межмолекулярных водородных связей [7].

При исследовании процесса глубокого каталитического окисления фенола рядом промежуточных соединений о-, п-бензохиноны, о-, п-гидрохиноны, р-гидроксибензойная кислота, тетрогидрор-бензохинон, малеиновая, малоновая, фумаровая, янтарная, уксусная, щавелевая, глиоксалевая, муравьиная кислот образуются нерастворимые полимерные продукты [8].

В работе [1] установлено повышение интенсивности пиков в области $\lambda = 275$ нм, что объясняется с образованием полимерных структур при радиолизе водных растворов резорцина, количество которых увеличивается до дозы 2 кГр, затем с ростом дозы уменьщается.

Несмотря на подробную информацию о продуктах окисления, твердые остатки, образующихся при радиолизе фенолов в водных растворов мало изучены.

Целью работы является изучение твердых остатков, образующихся при радиолизе водных растворов фенола, резорцина и гидрохинона.

Материалы и методы исследования

 1,1 г резорцин и гидрохинон, 0,94 г фенол добавляется в воду, объем который составляет 1 л, приготавливаются растворы с концентрацией 0,01 М. Насыщенный воздухом раствор фенола, резорцина и гидрохинона облучали γ-излучением от изотопа ⁶⁰Со, в статических условиях в стеклянных ампулах при комнатной температуре. Мощность поглощенной дозы составляла 0,21-0,26 Гр/с.

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 12, 2015 Исследовали твердый осадок, полученный при радиолизе водных растворов фенола и его двухатомных производных. Для анализа взяты твердые осадки, образующихся при радиолизе водного раствора фенола (100 и 200 кГр), резорцина (4 кГр) и гидрохинона (82 кГр). Максимальное количество продуктов образуются при дозе 200 кГр для фенола. Сначала образцы высушивали при комнатной температуре. Снимались Фурье ИК-спектры высушенных остатков после 2 суток. комнатной температуре. Реакция резорцина с формальдегидом протекает настолько энергично, что полимеры можно получать непосредственно на стадии изготовления изделий [2].

Результаты исследования и их обсуждение

Анализировали твердый осадок методом ИК-спектроскопии. Предполагается

Рис. 1.Фотографии твердых осадков полученные при радиолизе водного раствора резорцина при 4 кГр (а); гидрохинона (82 кГр) (б); фенола (200 кГр)(в)

Снимались спектры образцов в виде тонких пленок в ИК-Фурье-спектрометре фирмы Varian 640 FT-IR. С этой целью использовали подложки KBr. Спектры снимались в диапазоне длины волн 4000–400 см⁻¹.

Радиационно-химическое разложение фенола происходит по ступенчатому механизму: на первой стадьи образуются двухатомные фенолы (гидрохинон, резорцин, пирокатехин), далее о-,р- хиноны. После этого разрушается ароматическое кольцо с образованием ди- и монокарбоновых кислот. Фенолы могут взаимодействовать с продуктами, такими как альдегиды, образуя смолаобразные осадки.

Резорцин отличается от фенола повышенной реакционной способностью и может реагировать с формальдегидом без катализаторов и на холоду. Из трех изомерных одноядерных двухатомных фенолов (о-, м- и п-диоксибензолов) только м-диоксибензол (резорцин) способен образовывать пространственные полимеры при поликонденсации с формальдегидом. о-Диоксибензол (пирокатехин) и п-диоксибензол (гидрохинон) образуют олигомеры, которые могут медленно переходить в неплавкое, нерастворимое состояние только при высоких температурах. Это объясняется тем, что второй фенольный гидроксил активирует водород в м-положениях о- и п-диоксибензолов и делает возможным присоединение формальдегида в жестких условиях. В молекуле резорцина вторая гидроксильная группа в значительной степени активирует водород в орто- и пара-положениях. Кроме того, благодаря наличию второго гидроксила становится возможным образование кислородных эфирных мостиков между бензольными ядрами. Поэтому резорцин гораздо более энергично, чем фенол, взаимодействует с формальдегидом, и реакция поликонденсации может протекать без катализатора даже при что, в системе возникает реакции поликонденсации и образование твердых осадков фенол-формальдегидной смолы (рис. 2), резорцин-формальдегидной смолы, олигомеры гидрохинона [7].

Рис. 2.Структура фенолформальдегидной смолы

На рис. 3 представлены ИК-спектры твердых осадков полученные при радиолизе водных растворов фенола (10⁻²M) при поглошенных дозах 100 и 200 КГр.

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 12, 2015

Рис. 3. ИК-спектры твердых осадков, полученные при радиолизе водных растворов фенолов (10⁻²M) при поглошенами дозами 100 (1) и 200 кГр (2)

Согласно литературным данным [5]:

3700-3300 см⁻¹ – Внутри и межмолекулярные Н связи в димерах и полимерах;

3200-2800 см⁻¹ – Слабые (средние) валентные колебания С-Н связей в ароматических соединениях;

2800-2200 см⁻¹ – Валентные колебания гидроксильной группы;

2100-1700 см⁻¹ – Валентные колебании группы С=О в альдегидах и карбоновых кислотах; предельные алифатические кислоты с группой -CH₂-COOH (малоновой кислоты и уксусной),α,β- непредельные кислоты с группой С=С-СООН (муконовой, малеиновой, фумаровой кислоты);

***В области 2000–1600 см⁻¹ все ароматические соединения имеют группу слабых полос (обертона и составные частоты), число и положение которых определяются типом замещания бензольного кольца.

***Пики в областе1700–1634 см⁻¹ соответствует колебаниям 6-цленный цикл и 2 группы С=О в разных циклах в хинонов;

1608-1400 см⁻¹ – Валентные колебания ароматического кольца в аренах и кислоты с H- связами (муравиная кислота);

1295-1005 см⁻¹ – Плоскостные деформационные колебания С-Н связей 1,2-, 1,4-, 1,2,4-замещенных;

1000-630 см⁻¹ – Внеплокостные деформоционные колебания С-Н связей в аренах, колебания гидроксильной группы и С-О связей в карбоновых кислотах.

Из за неупорядоченной структуры (рис. 2) твердого осадка определить какого рода замещения в бензольном кольце не представляется возможным.

В работе [7] 1600–1500 см⁻¹ показывает валентные колебания ароматического кольца,1440–1300 см⁻¹ деформационная колебания ОН- групов,1620 см⁻¹ группу С=О.

Из сравнении ИК-спектров твердых осадков полученные при радиолизе водных растворов фенолов (10⁻²M) с поглошенной дозы 100 и 200 кГр видно что, число продуктов больше при высоких дозах (200 кГр).

На рис. 4 представлен ИК-спектр твердых осадков полученный при радиолизе водного раствора гидрохинона (10-²M) при поглошенной дозе 82 кГр.

3800-3200 см⁻¹ – Внутри и межмолекулярные Н связи в димерах и полимерах ;

3100-2600 см⁻¹ – Слабые (средние) валентные колебания С-Н связей в ароматических соединениях;

2400-2000 см⁻¹ – Связанная группа ОНперекрыванной с валентными колебаниями С-Н в карбоновых кислот;

2100-1700 см⁻¹ – Валентные колебании группы С=О в альдегидах и карбоновых кислотах; предельные алифатические кислоты с группой -CH₂-COOH (малоновой кислоты и уксусной), α, β- непредельные кислоты с группой С=С-СООН (муконовой, малеиновой, фумаровой кислоты);

1650-1632 см⁻¹ – Колебании 6-цленный цикл и 2 группы С=О в разных циклах в хинонов и кислоты с H- связами (муравиная кислота);

1600-1400 см⁻¹ – Валентные колебания ароматического кольца в аренах;

1300-900 см⁻¹ – Внеплокостные дефармоционные колебания С-Н связей в аренах, колебания гидроксильной группы и С-О связей в карбоновых кислотах;

800-550 см⁻¹ – Внеплокостные дефармоционные колебания С-Н в аренах, колебания гидроксильной группы и С-О связей в карбоновых кислотах.

Рис. 4. ИК-спектры твердых осадков полученные при радиолизе водного раствора гидрохинона (10⁻²M) при поглошенной дозой 82 кГр

Рис. 5. ИК-спектры твердых осадков полученные при радиолизе водного раствора резорцина (10⁻²M) при поглошенной дозой 4 кГр

Для кристаллических гидрохинона в нулевом приближении получено менее точное по сравнению с резорцином совпадение расчетных и экспериментальных величин. Это связано с перераспределением электронной плотности внутри молекулы диоксибензолов в зависимости от взаимного положения ОН-заместителей, что и определяет иные динамические и кинематические взаимодействия [6].

На рис. 5 представлен ИК-спектр твердых осадков полученные при радиолизе водного раствора резорцина (10⁻²M) при поглошенной дозе 4 кГр.

Из ИК-спектра резорцина можно сказать:

3700-3200 см⁻¹ – Внутри и межмолекулярные Н связи в димерах и полимерах;

3100-2500 см⁻¹ – Слабые (средние) валентные колебания С-Н связей в ароматических соединениях;

2400-2000 см⁻¹ – Связанная группа ОНперекрыванный с валентными колебаниями С-Н в карбоновых кислотах;

2000-1620 см⁻¹ – Образование 1,4-хинона, Валентные колебании группы С=О в альдегидах и карбоновых кислот предельные алифатические кислоты с группой -CH,-COOH (малоновой кислоты и уксусной),α, β- непредельные кислоты с группой С=С-СООН (муконовой, малеиновой, фумаровой кислоты);

1600-1400 см⁻¹ – Предельные алифатические кислоты с группой -СН,-СООН (малоновой кислоты и уксусной), α,β- непредельные кислоты с группой С=С-СООН (муконовой, малеиновой, фумаровой кислоты);

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 12, 2015

Значения частот ИК-спектров осадка,полученного в радиолитическом окислении фенола	Значения частот ИК-спектров осадка,полученного в радиолитическом окислении резорцина	Значения ча- стот ИК-спектров осадка,полученного в радиолитическом окис- лении гидрохинона Частота см ⁻¹	Значения частот ИК-спектров осадка,полученного в электрохимическом окислении фенола [2].	Значения частот ИК-спектров пленок, полу- ченных при электроокисле- нии фенола [3].
668 от	624 or	571 or	600 an	615 от
008 CJI	024 CJ	635 сл	000 cp	015 CJ
719 сл.		711 cp.	700 сл	_
800 ср.шир	768 ср.шир	776 ср.шир.	760 оч.с	754 оч.с.
848 плечо	819 плечо	859 ср.шир.	820 cp	830 шир
862 плечо	844 плечо	924 плечо	850 ср.шир.	830 ср.шир
940 плечо	961 ср.шир	_	980 сл	971 cp
1075 cp	1075 ср.шир	1071 cp	1070 сл	1080 сл
1000 cp	1018 c	1001 cp	1090 cp	1101 cp
-	1146 шир	1152 сл	-	1152 ср.шир
-	1227 сл	1214 сл	1190 оч.сл	1212 оч.с.
-	-	-	1235 плечо	1265 cp
1290 сл	-	1320 сл	1300 плечо	1288 cp
-	1452 cp	-	1440 ср.шир	1448 ср.шир.
_	1463 cp	-	1490 c	1488 c.
-	-	-	1520 cp.	1504
1634 сл	1632 c	1623 ср. шир.	1620 ср.шир.	1610 cp
1652 cp	1650 с 1682 плечо 1746 с 1920 с		1648 cp	1648 ср.шир
2362 плечо 2342 плечо 2872 ср.шир 3566 с	2857 c.	2033 ср. шир. 2659 ср. шир. 3291 ср. шир. 3415 с	3350 ср.шир.	
оц с -опент силгигий. слслабгий. шир -широкий				

Значения частот ИК-спектров осадков

1300-1000 см⁻¹ – Внеплокостные деформоционные колебания С-Н в аренах, колебания гидроксильной группы и С-О связей в карбоновых кислотах;

900-550 см⁻¹ – Внеплокостные деформоционные колебания С-Н в аренах, колебания гидроксильной группы и С-О связей в карбоновых кислотах.

Наблюдаемые нами полосы поглощения совпадает с результатами работы авторов [3], где изучены смолаобразные продукты реакции фенола, резорцина и фенол-резорцина с формальдегидом.

В таблице представлены значения частот ИК-спектров осадков.

В эксперименте в области 1220– 1380 см⁻¹ для кристаллического резорцина наблюдается усложнение спектра по сравнению с газобразным состоянием, что можно объяснить формированием у молекулы резорцина в первом случае сильных межмолекулярных водородных связей [6], что наблюдается и в нашей работе.

Спектры резорцина и гидрохинона различаются друг от друга и это можем объяснить с изменением взаимного положения гидроксильных групп, а также влиянием водородных связей.

Выводы

1. Проведенный сравнительный анализ Фурье- ИК спектров фенола и двухатомных фенолов (резорцин, гидрохинон) показывает идентичность колебании группового характера, при этом наблюдаются полосы поглощения в области 3566 см⁻¹ (фенол), 3357 см⁻¹ (резорцин), 3415 см⁻¹ (гидрохинон) свидетельствующей о наличии сильных внутри и межмолекулярных водородных связей, характерны для полимерной структуры.

2. С повышением поглощенной дозы от 100 до 200 кГр число продуктов разложения растут, что и подтверждается увеличением интенсивностей полос поглощения. Так как в Фурье-ИК спектрах фенола в области 2100-1700 см⁻¹ (для 200 кГр), в гидрохинона в областях 2400-2000 см⁻¹ и 1300-900 см⁻¹, в резорцине в областях 3100-2500 см⁻¹, 2000-1620 см⁻¹ и 900-550 сm⁻¹ наблюдается максимум интенсивностей полос.

Список литературы

1. Bagyo A.N.M., Lindu W.A., Sadjirun S, Winarno E.K. and oth. Radiation-induced degradation of organic pollutants in wastewater. – P. 140.

2. Резорцино-формальдегидные олигомеры, [Электронный ресурс] helpiks.org – хелпикс.орг –2014–2015 год. URL:http://helpiks.org/1-84924.html (дата обращения 16.12.2014).

3. Mohammed J.J. // Kinetics study of (Phenol-Resorcinol-Formaldahyde) Resin, Basrah Journal of Science, 2011. – Vol. 28, № 1. – P. 101–109.

4. Gattrell M., Kirk D.W. A Fourier transform infrared spectroscopy study of the passive film produced during aqueous acidic phenol electro-oxidation. // J. Electrochem.Soc. -1992. - V. 139. - P. 2736-2744.

5. Тарасевич Б.Н. // ИК спектры основных классов органических соединений//доц. Справочные материалы. – Москва, 2012. – С. 11–20.

6. Бобкова Е.Ю., Васильева В.С., Ксенофонтов М.А., Островская Л.Е., Шундалов М.Б. // Спектрально-энергетические харак-теристики дигидроксибензолов в кристаллическом состоянии // Журнал Физика. – 2009. – № 3. – С. 7–13.

7. Кукурина О.С. Окислительное обезвреживание органических пестицидных препаратов. – 2013. – С. 93–95.

8. Кукурина О.С., Новиков В.Т., Штыкина А.В. Разработка жидкофазного метода глубокого окисления фенолов, Известия Томского политехнического университета. – 2007. – том 311. – № 3. – С. 121–124.