УДК 550.4:556+550.47

ГИДРОХИМИЧЕСКОЕ СОСТОЯНИЕ ПРИТОКОВ ВЕРХНЕГО ТЕЧЕНИЯ РЕКИ ОНОН (ЗАБАЙКАЛЬСКИЙ КРАЙ)

Цыбекмитова Г.Ц., Куклин А.П.

Институт природных ресурсов, экологии и криологии CO PAH, Чита, e-mail: gazhit@bk.ru, kap0@mail.ru

Проведен анализ гидрохимического состояния притоков верхнего течения р. Онон, в местах подверженных добыче россыпного золота. Воды исследованных водотоков маломинерализованные, в основном гидрокарбонатно-кальциевого состава, реакция среды щелочная с рН среды выше 7,0. По ряду водотоков отмечается превышение значений ПДК в водах рыбохозяйственных водоемов по Mn, Zn, As и Pb.

Ключевые слова: гидрохимия, речные воды, макро- и микрокомпоненты

ONON RIVER UPPER CURRENT TRIBUTARIES HYDROCHEMICAL CONDITION (ZABAYKALSKY KRAY)

Tsybekmitova G.C., Kuklin A.P.

Institute of Natural Resources, Ecology and Cryology, Siberian Branch of Russian Academy Science, Chita, e-mail: gazhit@bk.ru, kap0@mail.ru

Onon river upper current tributaries hydrochemical condition analyses in subjected to alluvial mining areas have been conducted. Investigated watercourses are mineralized. It has mainly bicarbonate-calcium composition, the reaction medium is alkaline with pH above 7.0. On a number of watercourses were exceeded limit values in the waters of fishery reservoirs of Mn, Zn, As and Pb.

Keywords: hydrochemistry, river water, macro- and microelements

Трансграничная река Онон относится к бассейну р. Амур, площадь которого является одной из крупнейших на планете (1,85 млн кв. км). Река Онон протекает по территории северо-востока Монголии и юга Забайкальского края. Истоки реки находятся на восточном склоне хребта Хэнтэй. В верхнем течении (460 км) р. Онон протекает по Хэнтэй-Чикойскому нагорью на территории Монголии. В среднем и нижнем течении низовьях уже на территории России - между Могойтуйским и Борщовочным хребтами. Площадь водосбора 96,2 тыс. км², из которых 64,6 тыс. км² приходится на территорию Забайкальского края. Общая протяженность реки 1032 км [2]. На территории России формируются главные притоки верхнего течения р. Онон (р. Агуца, р. Бальджа, р. Кыра).

В притоках реки Онон распространены россыпи золота и олова, на некоторых проводилась их добыча. Разрабатываются групны золотоносных россыпей Бальджа, Киркун, Тырино-Бырцинская [12]. Долины рек Бальжиканка, Бырца, Тырин на участках отработки месторождений заполнены отвалами горных пород. Биологическая рекультивация не проведена. В связи с отсутствием почвенного слоя в течение длительного времени отвалы не зарастают. Доступные для ветра и воды они могут быть источниками миграции загрязнений в виде растворенных и взвешенных веществ. Стационарные мо-

ниторинговые наблюдения на водных объектах района разработки россыпного золота не проводятся.

Цель настоящих исследований — получить данные о физико-химических параметрах вод притоков верхнего течения р. Онон в пределах Российской Федерации.

Материалы и методы иследования

В виду отсутствия на исследуемых водных объектах режимных стационарных наблюдений, нами в статье анализируются данные по разовым съемкам экспедиционных исследований, проведенных в 2011-2012 гг. на реках: Бальжиканка, Киркун, Букукун, Бырца, Дунда-Хонгорун и Тырин. Отбор проб и определение содержания азота и фосфора проводили общепринятыми в гидрохимии методами [11]. Физико-химические параметры воды (температура и рН воды, содержание О, минерализация) измерены в местах отбора проб с помощью прибора «AQWA-метр» (Германия). Макрокомпонентный состав вод определен атомно-адсорбционным, фотометрическим, титриметрическим методами в лабораторно-исследовательском центре по изучению минерального сырья (ОАО «ЛИЦИМС»), аккредитованной Федеральным агентством по техническому регулированию и метрологии № РОСС RU.0001.510387. Микрокомпонентный состав вод проведен в лаборатории Хабаровского инновационно-аналитического центра при Институте тектоники и геофизики им. Ю.А. Косыгина ДВО РАН методом атомно-абсорбционной спектрофотометрии (прибор Perkin-Elmer 3030 В). Оценка состояния водоёма производилась по отношению к предельнодопустимым концентрациям (ПДК) содержания веществ в воде рыбохозяйственных водоемов [8].

Результаты исследований и их обсуждение

Для исследованных горных и предгорных рек с питанием за счет атмосферных осадков характерны высокая скорость течения и быстрая смена вод. Поэтому воды рассматриваемых водных объектов слабоминерализованные. По общей минерализации можно разделить на водотоки с минерализацией до 0,08 г/л (реки Букукун, Киркун), с минерализацией от 0,08 до 0,25 г/л (реки Бальжиканка, Тырин, Бырца), и с минерализацией более 0,25 г/л (р. Дунда-Хонгорун). Жесткость воды карбонатная, за исключением вод р. Дунда-Хонгорун, подверженных воздействию карьерных вод рудника «Любовь». Для пресноводных рыб благоприятна мягкая и среднежесткая вода [3]. Слишком мягкая вода нежелательна для рыб из-за недостатка в ней солей кальция, магния и других элементов. Термический режим водотоков зависит от климатических факторов, глубины и скорости течения реки. Средняя температура исследованных водотоков в июне месяце варьирует от 3,0°С до 22,0°С, а в октябре – от 1,7°С до 13,2°С. Небольшие температурные различия в водах водотоков связаны с горным характером их течения, в питании которых большую долю составляют атмосферные осадки (табл. 1).

В гидрохимическом составе вод преобладают ионы HCO₃⁻ и Ca²⁺. Отличается река Дунда-Хонгорун по гидрохимической характеристике от других водотоков (сульфатно-кальциевая). Повышенное содержание сульфат-ионов и кальция обусловлено окислением сульфидных минералов в отвалах, которые в сухую погоду ветром разносятся по водосборному бассейну. В результате дождей происходит смыв с водосборной площади сульфатов в речную систему и происходит смена типа воды (табл. 2).

Таблица 1 Физико-химические параметры исследованных водотоков в 2011–2012 гг.

Водоток		Срок сбора проб	t,°C	рН	V, м/c	Жесткость, мг-экв/дм ³	М, г/л
Бальжиканка	верхнее	06.2011	3,2	7,76	0,3	0,80	0,08
	•	10.2011	1,7	7,44	0,5	0,80	0,08
		06.2012	3,0	7,38	0,3	1,25	0,05
	среднее	06.2011	3,1	7,34	0,1	1,20	0,12
	-	10.2011	5,7	7,60	0,1	1,30	0,12
		06.2012	13,5	7,71	0-0,5	0,90	0,09
	нижнее	06.2011	11,5	7,99	0-0,4	1,20	0,11
		10.2011	7,3	7,61	0-0,4	1,20	0,11
		06.2012	12,5	7,77	0-0,3	0,80	0,08
Киркун	среднее	06.2011	17,9	7,09	0-0,5	0,55	0,06
		10.2011	5,6	7,02	0-0,4	0,50	0,05
		06.2012	18,2	7,28	0-0,4	0,40	0,04
Букукун	среднее	06.2011	12,1	7,09	0-0,4	0,50	0,06
	_	10.2011	3,26	6,82	0-0,4	0,50	0,06
		06.2012	11,8	7,28	0-0,4	0,40	0,05
Бырца	нижнее	06.2011	18,9	8,43	0,2	1,45	0,17
		10.2011	7,0	7,87	0	2,20	0,23
		06.2012	18,5	7,90	0,2	1,80	0,21
Дунда-Хонго-рун	карьер	06.2011	23,0	8,15	0	9,00	0,73
		10.2011	8,2	7,77	0	9,50	0,72
		06.2012	22,0	7,75	0	8,85	0,69
	ниже рудника	06.2011	18,2	7,90	0,1	8,65	0,69
	Любовь	10.2011	13,2	8,09	0,1	8,70	0,67
		06.2012	20,7	8,07	0,1	8,45	0,66
Тырин	7 км выше	06.2011	10,0	7,78	0-0,3	1,20	0,12
	с. Хапчаранга	10.2011	6,2	7,70	0-0,3	1,30	0,12
		06.2012	9,2	7,49	0-0,4	0,85	0,09
	1 км ниже	06.2011	19,8	7,98	0-0,2	1,45	0,14
	с. Хапче-ранга	10.2011	11,9	7,92	0-0,3	1,30	0,12
		06.2012	19,2	4,77	0-0,4	1,00	0,10

Таблица 2 Гидрохимическая характеристика водотоков (2011—2012 гг.) (мг/л)

Водоток	Na ⁺	K ⁺	Ca ²⁺	$\mathrm{Mg}^{2^{+}}$
1	2	3	4	5
Бальжи-канка	$2,2 \pm 0,04$	0.6 ± 0.012	$14,9 \pm 3,16$	$2,6 \pm 0,09$
Киркун	$1,7 \pm 0,04$	0.8 ± 0.02	$7,7 \pm 0,28$	$1,2 \pm 0,12$
Букукун	$2,3 \pm 0,66$	0.8 ± 0.01	$6,0 \pm 0,01$	$2,0 \pm 0,10$
Бырца	$14,9 \pm 0,08$	$2,5 \pm 0,02$	$24,0 \pm 1,07$	$7,5 \pm 0,19$
Дунда-Хонгорун	$18,7 \pm 0,48$	$1,9 \pm 0,07$	$134,9 \pm 0,51$	$25,8 \pm 0,63$
Тырин	$3,9 \pm 0,09$	$1,1 \pm 0,03$	$18,4 \pm 0,47$	$3,7 \pm 0,23$
ПДК рыбохоз.	120,0	50,0	180,0	40,0

Окончание табл.						
Cl -	SO ₄ ²⁻	HCO ₃ ·	Тип воды			
6	7	8	9			
0.8 ± 0.12	$7,2 \pm 1,84$	$58,3 \pm 7,13$	Гидрокарбонатно-кальциевый			
0.7 ± 0.02	$4,3 \pm 0,14$	$30,5 \pm 0,91$	Гидрокарбонатно-кальциевый			
0.7 ± 0.01	$4,7 \pm 0,37$	$34,6 \pm 0,52$	Гидрокарбонатно-кальциевый			
$2,3 \pm 0,05$	$15,7 \pm 0,48$	$133,2 \pm 3,08$	Гидрокарбонатно-кальциевый			
$8,2 \pm 0,36$	$362,5 \pm 6,64$	$136,2 \pm 4,80$	Сульфатно-кальциевый			
0.9 ± 0.02	$14,7 \pm 0,57$	$69,6 \pm 1,35$	Гидрокарбонатно-кальциевый			
300,0	100,0	15,0*				

 Π р и м е ч а н и е . * – Π ДК для питьевой воды.

Таблица 3 Содержание тяжелых металлов в водотоках территории исследования в июне 2011–2012 гг. (мкг/л)

Водоток	Cr	Mn	Fe	Со	Ni	Cu
1	2	3	4	5	6	7
Бальжиканка	$4,2 \pm 0,05$	$7,5 \pm 0,18$	$151,2 \pm 9,42$	$0,11 \pm 0,001$	$3,10 \pm 0,110$	$3,8 \pm 0,06$
Киркун	$1,2 \pm 0,37$	$5,8 \pm 0,19$	$100,5 \pm 2,09$	$0,09 \pm 0,006$	$1,26 \pm 0,199$	$3,4 \pm 0,32$
Букукун	$2,4 \pm 0,32$	$6,1 \pm 0,42$	$198,5 \pm 17,77$	$0,14 \pm 0,011$	$2,32 \pm 0,223$	$3,5 \pm 0,13$
Бырца	$2,2 \pm 0,34$	$119,5 \pm 1,91$	$633,2 \pm 5,96$	$0,36 \pm 0,003$	$2,09 \pm 0,224$	$4,0 \pm 0,21$
Дунда-Хонгорун	$2,2 \pm 0,29$	$110,8 \pm 17,65$	$611,0 \pm 78,88$	$0,48 \pm 0,044$	$2,80 \pm 0,208$	$6,7 \pm 0,53$
Тырин	$2,8 \pm 0,40$	$42,6 \pm 5,89$	$491,0 \pm 60,87$	$0,28 \pm 0,024$	$3,19 \pm 0,307$	$7,8 \pm 0,94$
ПДК питьевых	50	100	300	100	20	100
(ГН 2.1.5.1315-03)						
ПДК рыбохоз.	20	10	100	10	10	1

Окончание табл. 3								
Zn	As	Sr	Mo	Cd	Sn	Sb	Pb	
8	9	10	11	12	13	14	15	
$6,2 \pm 0,05$	0.38 ± 0.002	$133,1 \pm 6,27$	$0,76 \pm 0,014$	$0,05 \pm 0,003$	$0,12 \pm 0,012$	$0,19 \pm 0,007$	$0,77 \pm 0,011$	
$8,8 \pm 0,63$	$0,61 \pm 0,019$	$43,6 \pm 0,79$	$0,38 \pm 0,004$	$0,14 \pm 0,023$	Н.П.О.	$0,16 \pm 0,006$	$0,55 \pm 0,082$	
$7,8 \pm 0,52$	$2,90 \pm 0,035$	$32,2 \pm 0,24$	$0,67 \pm 0,012$	$0,33 \pm 0,053$	$0,10 \pm 0,001$	$0,18 \pm 0,001$	$1,01 \pm 0,128$	
$6,6 \pm 0,05$	$5,10\pm0,135$	$248,1 \pm 9,53$	$1,47 \pm 0,105$	$0,02 \pm 0,001$	$0,04 \pm 0,004$	$0,18 \pm 0,005$	$0,57 \pm 0,021$	
$9,8 \pm 0,67$	$65,48 \pm 11,843$	$1204,7 \pm 125,42$	$2,03 \pm 0,107$	0.15 ± 0.027	_	$0,89 \pm 0,111$	$1,12 \pm 0,102$	
$49,1 \pm 7,65$	$5,76 \pm 0,620$	$137,4 \pm 9,44$	$0,44 \pm 0,017$	0.32 ± 0.049	0.18 ± 0.009	$0,21 \pm 0,009$	$14,32 \pm 0,511$	
1000	10	7000	250	1	_	5	10	
10	50	400	1	5	112	_	6	

 Π р и м е ч а н и е . «–» нет данных; «н.п.о.» – ниже предела обнаружения метода.

Соли кальция и магния регулируют буферные свойства воды, связывают многие токсические вещества (тяжелые металлы), переводят их в нерастворимые осадки, а также положительно влияют на резистентность организма гидробионтов к некоторым болезням [6; 7].

Миграция большинства металлов в водах исследованных рек, по сравнению с сильнокислыми водами, ограничена, так как они осаждаются в форме нерастворимых гидроксидов, карбонатов и других соединений [1; 10]. Геохимическую миграцию тяжелых металлов могут определять и сульфиды, содержащиеся в качестве попутных минералов в рудах. При взаимодействии с водой сульфиды способствуют формированию кислой среды. Нейтрализуют сульфиды карбонаты, которые, растворяясь, повышают значение рН до щелочных, тем самым ведут к снижению миграции тяжелых металлов. Другим фактором малой миграционной активности может служить кварцевое оруденение, при котором не происходит образования кислых вод [9].

Содержание микрокомпонентов в водотоках и водоемах исследуемой территории представлено в табл. 3. В целом, концентрации токсичных тяжелых металлов в исследованных водотоках низкие, что определяется нейтральными значениями рН, ограничивающими миграцию химических элементов вследствие образования слаборастворимых гидроксидов. Как указывается в работе [4], при разработке месторождений полезных ископаемых района исследований, концентрации металлов в дренажном стоке, вследствие щелочного геохимического барьера, будут существенно ниже, чем на месторождениях с кислыми водами. Повышенными могут быть концентрации мышьяка в силу миграции его в нейтральных средах преимущественно в виде арсената.

По Ĉu и Fe во всех водотоках обнаружены повышенные концентрации по его рыбохозяйственному значению. Хотя в природных пресных водах концентрация меди колеблется от 2 до 30 мкг/мл. Медь относится к числу активных микроэлементов, участвующих в процессе фотосинтеза и влияющих на усвоение азота растениями [5].

В отношении загрязнения водной среды особо опасны отвалы и хвосты обогащения руд, сток с которых поступает в речную сеть, при этом даже при кратковременном контакте с ними выпадающих атмосферных осадков происходит переход метал-

лов в воду в аномальных концентрациях. В водотоках, дренирующих аллювиальные россыпи, в которых миграция химических элементов прошла на этапе формирования месторождения, содержание загрязнителей находится на уровне фона. Ультрапресные воды верхних участков хребтов обладают большой растворяющей способностью [10].

Заключение

Исследованные водотоки маломинерализованные, в основном гидрокарбонатнокальциевого состава, реакция среды щелочная. рН среды выше 7,0 что ограничивает миграцию химических элементов и обогащение вод солями тяжелых металлов. Тем не менее, по железу и меди во всех водотоках, а по марганцу, цинку, мышьяку и свинцу — по отдельным водотокам отмечаются увеличения рыбохозяйственной ПДК.

Благодарности. Проведение работ финансировано по гранту РФФИ № 11-05-98034-р_сибирь_а.

Список литературы

- 1. Алекин О.А. Основы гидрохимии. Л.: Гидрометео-издат, 1970. 444 с.
- 2. Атлас Забайкалья (Бурятский АССР и Читинская область). М. Иркутск: ГУГК, 1967. 176 с.
- 3. Воробьев В. И. Биогеохимия и рыбоводство. Саратов: ЛИТЕРА, 1993. С. 312.
- 4. Замана Л.В., Вахнина И.Л. Техногенные ландшафты Любавинского рудного поля (Восточное Забайкалье) // Труды III Всероссийского симпозиума с международным участием и IX Всероссийских чтений памяти акад. А.Е. Ферсмана, 2010. 168 с.
- 5. Зенин А.А., Белоусова Н.В. Гидрохимический словарь. Л.: Гидрометеоиздат, 1988. 239 с.
- 6. Никаноров А.М. Гидрохимия. Л.: Гидромете
оиздат, 1989. 352 с.
- 7. Новиков Ю.В. Экология, окружающая среда и человек: учеб. пособие для вузов, средних школ и колледжей. 3-е изд., испр. и доп. М.: Фаир-Пресс, 2005.-736 с.
- 8. Нормативы качества воды водных объектов рыбохозяйственного значения, в том числе нормативы предельно допустимых концентраций вредных веществ в водах водных объектах рыбохозяйственного значения: Приказ Федерального агентства по рыболовству от 18 января 2010 г. № 20. URL: http://www.garant.ru/products/ipo/prime/doc/2070984/ (дата обращения: 11.03.15).
- 9. Отчет о научно-исследовательской работе по региональному проекту РФФИ № 11-05-98034-р_сибирь_а «Макрофитные водоросли как источники загрязнения тяжелыми металлами вод и гидробионтов» (фонды ИПРЭК СО РАН, 2012). 120 с.
- 10. Перельман А.И., Касимов Н.С. Геохимия ландшафта. М.: Астрея. 1999. 768 с.
- 11. Руководство по химическому анализу поверхностных вод суши / Под ред. А.Д. Семенова. Гидрометеоиздат, 1977. 540 с.
- 12. Юргенсон Г.А. Минеральное сырье Забайкалья: Учебное пособие. Часть І. Книга 3. Благородные металлы. Чита: Поиск, 2008. С. 51.