УДК 616.316-008.8: 612.017-053.2

ОЦЕНКА СТЕПЕНИ ТЯЖЕСТИ ЗУБОЧЕЛЮСТНЫХ АНОМАЛИЙ ПО ПОКАЗАТЕЛЯМ БИОЭЛЕМЕНТНОГО СОСТАВА СЛЮНЫ

Доменюк Д.А., Дмитриенко С.В., Ведешина Э.Г., Чижикова Т.С., Огонян Е.А., Чижикова Т.В.

Пятигорский медико-фармацевтический институт — филиал ГБОУ ВПО «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Пятигорск-32, e-mail: s.v.dmitrienko@pmedpharm.ru

С помощью лабораторно-диагностических методов проведено исследование электролитного состава и водородного показателя смешанной слюны у детей, подростков в возрасте от 7 до 14 лет с зубочелюстными аномалиями. Установлено, что адекватным показателем, отражающим интенсивность морфофункциональных нарушений при зубочелюстных аномалиях в ротовой жидкости, является увеличение градиента соотношения железо/магний, а также снижение градиента соотношения калий/кальций при сдвиге водородного потенциала в щелочную сторону.

Ключевые слова: электролитный состав, водородный показатель, корреляционный анализ, зубочелюстные аномалии, оксидативный стресс

ASSESSMENT OF THE SEVERITY OF DENTOALVEOLAR ANOMALIES IN TERMS OF BIOELEMENT COMPOSITION OF SALIVA

Domenyuk D.A., Dmitrienko S.V., Vedeshina E.G., Chizhikova T.S., Ogonyan E.A., Chizhikova T.V.

Pyatigorsk Medical-Pharmaceutical Institute, Branch of Volgograd State Medical University, Ministry of Healthcare, Russian Federation, Pyatigorsk-32, e-mail: s.v.dmitrienko@pmedpharm.ru.

Laboratory-diagnostic methods were used to study the electrolyte composition as well as the hydrogen index of mixed saliva in 7–14 year-old children and adolescents with dentoalveolar anomalies. It has been shown that a reliable index revealing the intensity of morphological and functional disturbances in case of dentoalveolar anomalies is an increase in the iron/magnesium ratio gradient as well as a decrease in the potassium/calcium ratio gradient along with a shift of the hydrogen potential towards alkali in the oral liquid.

Keywords: electrolyte composition, hydrogen index, correlation analysis, dentoalveolar anomalies, oxidative stress

По данным ВОЗ (2009) распространённость зубочелюстных аномалий (ЗЧА) в структуре стоматологической заболеваемости у детей и подростков находится на третьем месте после кариеса и патологии пародонта, имея тенденцию к дальнейшему устойчивому росту [6, 9].

В соответствии с современными научными положениями, состояние зубочелюстной системы у детского населения рассматривается в качестве индикатора состояния соматического здоровья, а изменения стоматологического статуса у детей с различными отклонениями здоровья являются отображением происходящих в макроорганизме метаболических, гемодинамических, иммунологических и нейрорегуляторных нарушений, а также сдвигами микробиоценоза. Подтверждением сформулированных научных позиций о морфофункциональной основе единства соматического и стоматологического здоровья является единство генезиса кожи и её производных, а также опорно-двигательной системы, лицевой части черепа, клапанов сердца и сосудов. Поэтому одной из актуальных проблем медицинской науки и практического здравоохранения на современном этапе является совершенствование диагностических и лечебно-профилактических мероприятий, направленных на улучшение стоматологического здоровья детского населения, а также предупреждение функциональных нарушений зубочелюстной системы, являющихся пусковыми механизмами развития общесоматической патологиии [2, 3, 8].

Многочисленно проводимые лабораторно-диагностические исследования в области изучения роли дисбаланса макро- и микроэлементов в формировании здоровья детского населения доказывают, что элементный обмен в норме существенно зависит от показателей иммунного статуса, а также климатогеографических, экологических, генетических, биосоциальных и хронобиологических факторов, определяющих в целом общее состояние резистентности организма [1, 5]. Действие элементов обусловливается химических интервалом концентраций, при которых допустимо протекание нормальных обменных процессов. Выраженность обменных реакций определяется согласованной работой адаптационных механизмов и возможностями, программированными и установленными генотипом [10].

В научной литературе представлены убедительные доказательства того, что происходящие при ЗЧА морфофункциональные сдвиги сопровождаются не только изменением микробиоценоза в полости рта, что является важным патогенетическим механизмом, но и нарушением гомеостатического равновесия и, в частности, его элементного статуса [4, 6, 9]. В этой связи представляется целесообразным изучение корреляционных связей между степенью выраженности морфологических изменений и электролитным составом смешанной слюны у детей и подростков с аномалиями зубочелюстной системы. Результаты корреляционного анализа, как интегрального показателя метаболических нарушений, позволят не только выявить дисбаланс макро- и микроэлементов, но и установить эффективность адаптационных механизмов, направленных на нормализацию элементного состава ротовой жидкости.

Цель исследования — оценить влияние зубочелюстных аномалий на элементный состав и уровень кислотно-основного равновесия смешанной слюны у детей и подростков.

Материалы и методы исследования

Изучение содержания элементного состава (Са, Fe, K, Mg) и уровня pH в нестимулированной ротовой жидкости (НРЖ) проведено у 68 практически здоровых пациентов (I, II группа здоровья) в возрасте от 7 до 14 лет с интактными зубами, а также имеющими компенсированную форму кариеса (единичные кариозные поражения – І степень кариеса) без патологии пародонта (индекс РМА ≥ 20%). Пациенты были разделены на три группы диспансерного наблюдения. В 1-ю группу вошли 24 пациента с ЗЧА І класса по Энглю; во 2-ю группу включено 23 пациента с ЗЧА II класса, 1 и 2 подклассов по Энглю; в 3-ю группу включён 21 пациент с ЗЧА III класса поЭнглю-Катцу. Диагноз был поставлен на основании классификации Энгля, дополненной классификацией Д.А. Калвелиса (1957) и классификацией аномалий зубов и челюстей кафедры ортодонтии и детского протезирования МГМСУ им. А.И. Евдокимова (2006). Все пациенты с ЗЧА проходили клиническое обследование, включающее сбор анамнеза и осмотр. У всех детей и подростков были проведены антропометрические исследования лица и головы пациента, а также анализ контрольно-диагностических моделей челюстей. Изучали взаимоотношение размеров зубов, ширину зубных рядов по Pont, сагиттальные изменения по методу Korkhaus, соотношение сегментов зубных дуг – по Gerlach, оценивали форму зубных рядов, их соотношение, а также положение отдельных зубов в сагиттальной, трансверсальной и вертикальной плоскостях. В качестве дополнительных методов исследования использовалось рентгенологическое исследование (ортопантомография, телерентгенография, внутриротовая контактная рентгенография). Анализ боковых телерентгенограмм головы проводили по методу Шварца.

Забор НРЖ у каждого обследуемого проводили в клинике натощак с 8 до 9 часов утра. Пациентов просили не проводить процедуры, стимулирующие слюноотделение, предварительно пациентам всех обследуемых групп проведена профессиональная чистка зубов. При исследовании элементного состава забор НРЖ в количестве 0,7 мл производился непосредственно из полости рта, с последующим помещением материала в пробирку объемом 10 мл (методика Р.В. Карасевой, 2006) и хранением образцов при температуре от 0 до +4°C. При анализе уровня рН аккумулированную в полости рта НРЖ пациент сплевывал в стерильную градуированную охлаждённую стеклянную пробирку в количестве 5-7 мл. Затем смешанная слюна центрифугировалась 15 минут при 8000 об/мин. Надосадочную часть НРЖ переливали в пластиковые пробирки и хранили при температуре -30°C.

Исследование элементного состава смешанной слюны выполнялись с использованием коммерческих наборов реактивов фирмы «BIOCON» («Analyticon») на автоматическом биохимическом анализаторе «Vita lab Flexor E» (Нидерланды, 2002).

- 1. Метод определения концентрации кальция в биологическом материале. Исследование выполнялось с использованием коммерческих наборов реактивов фирмы «BIOCON» («Analyticon») Fluitest®CaA III (Каталожный № 2003). Принцип метода: Арсеназо III вступает в реакцию с кальцием в кислом растворе, образуя пурпурноголубой комплекс. Интенсивность окраски развивается пропорционально концентрации кальция и измеряется фотометрически при длине волны (λ) 650 нм.
- 2. Метод определения концентрации магния в биологическом материале. Исследование выполнялось с использованием коммерческих наборов реактивов фирмы «ВІОСОN» («Analyticon») Fluitest®MG XB (Каталожный № 3908). Принцип метода: интенсивность окраски образовавшегося магниевого комплекса с ксилидил синим прямо пропорционально концентрации магния, и измеряется фотометрически при длине волны (λ) 546 (520) нм.
- 3. Метод определения концентрации железа в биологическом материале. Исследование выполнялось с использованием коммерческих наборов реактивов фирмы «Диакон-ДС» Железо-ФС (Каталожный № 10091 серия 0060511) колориметрическим методом (без протеинизации). Принцип метода: связанное с трансферрином железо отщепляется в кислой среде в виде трехвалентного железа и затем восстанавливается до двухвалентного в присутствии аскорбиновой кислоты. Двухвалентное железо образует с ференом окрашенный комплекс синего цвета, интенсивность окраски которого прямо пропорционально концентрации железа в пробе и измеряется фотометрически при длине волны (λ) 600 (580–600) нм.
- 4. Метод определения концентрации калия в биологическом материале. Исследование выполнялось с использованием коммерческих наборов реактивов фирмы «Витал» Калий-11-Витал (Каталожный № В26.11) турбодиметрическим методом (без протечнизации). Принцип метода: ионы калия, введенные в реакционную смесь, образуют стабильную суспензию. Мутность суспензии прямо пропорционально

концентрации ионов калия в пробе и измеряется фотометрически при длине волны (λ) 578 (505-590) нм.

5. Для определения кислотно-основного состояния смешанной слюны использовался портативный многоцелевой рН-метр «HI8314F» («HANNA», Германия) с автокомпенсацией (диапазон измерений — 0,0—14,0; разрешение — 0,01; точность измерения ± 0,01). Статистическая обработка результатов исследований проводилась с использованием программы «Microsoft Excel XP», «Statistica 6.0» и включала описательную статистику, оценку достоверности различий по Стьюденту и корреляционный анализ с оценкой достоверности коэффициентов корреляции. При оценке достоверности отличий использовалось значение р < 0,05.

Результаты исследования и их обсуждение

Элементный состав и уровень рН в НРЖ пациентов 1-й группы представлен в табл. 1.

У пациентов 1-й группы рН, параметры активности ионов кальция, калия в НРЖ находятся в пределах референтных значений нормы пациентов без ЗЧА. Относительно усреднённых нормативных показателей пациентов без ЗЧА, активность ионов магния

снижена на $50.8 \pm 2.3\%$; ионов железа — повышена на $68.6 \pm 2.8\%$.

Элементный состав и уровень рН в НРЖ пациентов 2-й группы представлен в табл. 2.

У пациентов 2-й группы pH, показатели активности ионов кальция, калия в НЖР находятся в пределах референтных значений нормы клинически здоровых детей. Сравнительно усреднённых нормативных показателейпациентов без 3ЧА, активность ионов магния снижена на $61,3 \pm 2,6\%$; ионов железа — повышена на $144,2 \pm 6,7\%$.

Элементный состав и уровень рН в НРЖ пациентов 3-й группы представлен в табл. 3.

У пациентов 3-й группы pH, параметры активности ионов кальция, калия в HPЖ находятся в пределах референтных значений нормы пациентов без 3ЧА. По отношению к усреднённым нормативным показателям пациентов без 3ЧА, активность ионов магния снижена на $65,6\pm2,9\%$; ионов железа — повышена на $224,4\pm9,1\%$.

Таблица 1 Элементный состав и уровень pH в НРЖ пациентов 1-й группы ($M\pm m$)

Состав	Показатели	Единицы измерения	Референтные значения нормы в НРЖ клинически здоровых	Источник
Кальций (Са)	$1,25 \pm 0,06*$	ммоль/л	0,75–3,0	Денисов А.Б., 2006
Железо (Fe)	2,63 ± 0,12*	мкмоль/л	1) 0,85 ± 0,09 2) 1,4–1,72	Гильмиярова Ф.Н., 2007 Эльбекьян К.С., 2005
Калий (К)	24,2 ± 1,1*	ммоль/л	12,8–25,6	Денисов А.Б., 2006
Магний (Mg)	$0,31 \pm 0,02*$	ммоль/л	0,38-0,85	Денисов А.Б., 2006
рН	$6.8 \pm 0.3*$	ед	6,5–7,4	Вавилова Т.П., 2008

 Π р и м е ч а н и е . * — р < 0,05 статистически достоверно по сравнению с референтными значений нормы клинически здоровых пациентов (критерий Ньюмена-Кейлса, критерий Данна).

Состав	Показатели	Единицы измерения	Референтные значения нормы в НРЖ клинически здоровых	Источник
Кальций (Са)	1,31 ± 0,07*	ммоль/л	0,75–3,0	Денисов А.Б., 2006
Железо (Fe)	3,81 ± 0,18*	мкмоль/л	1) 0,85 ± 0,09 2) 1,4–1,72	Гильмиярова Ф.Н., 2007 Эльбекьян К.С., 2005
Калий (К)	$24,5 \pm 1,2*$	ммоль/л	12,8–25,6	Денисов А.Б., 2006
Магний (Mg)	$0,24 \pm 0,01*$	ммоль/л	0,38-0,85	Денисов А.Б., 2006
рН	6,6 ± 0,3*	ед	6,5–7,4	Вавилова Т.П., 2008

 Π р и м е ч а н и е . * - р < 0.05 статистически достоверно по сравнению с референтными значений нормы клинически здоровых пациентов (критерий Ньюмена-Кейлса, критерий Данна).

Референтные значения Единицы Состав Показатели нормы в НРЖ Источник измерения клинически здоровых $1.47 \pm 0.08*$ 0,75-3,0Кальций (Са) Денисов А.Б., 2006 ммоль/л $\overline{1)}\,\,\overline{0.85} \pm 0.09$ Железо (Fe) Гильмиярова Ф.Н., 2007 $5.06 \pm 0.23*$ мкмоль/п Эльбекьян К.С., 2005 2) 1,4–1,72 $25,1 \pm 1,3*$ 12,8-25,6 Денисов А.Б., 2006 Калий (К) ммоль/л 0.21 ± 0.01 * Денисов А.Б., 2006 Магний (Мд) ммоль/л 0,38-0,85рН $6,4 \pm 0,3*$ 6,5-7,4Вавилова Т.П., 2008 ед

Таблица 3 Элементный состав и уровень pH в НРЖ пациентов 3-й группы ($M \pm m$)

 Π р и м е ч а н и е . * - р < 0,05 статистически достоверно по сравнению с референтными значений нормы клинически здоровых пациентов (критерий Ньюмена-Кейлса, критерий Данна).

Системный анализ результатов лабораторно-клинических исследований позволяет утверждать, что наиболее выраженным колебаниям показателей при ЗЧА у детей и подростков среди элементного состава смешанной слюны, по сравнению с усреднёнными референтными значениями нормы клинически здоровых пациентов, подвержено железо (прирост 1,68-3,24 раза) и магний (убыль 1,98-2,92 раза). Клинически обосновано, что в этиологии воспаления десны важную роль играют микроорганизмы, в частности стафилококки, находящиеся в зубном налете, жидкости зубодесневого кармана и слюне, для жизнедеятельности которых необходимо железо. Избыток железа ингибирует бактериостатическую роль лактоферрина, хемотаксис и фагоцитоз лейкоцитов, фагоцитоз макрофагов, трансформацию лимфоцитов, бактерицидную роль антител и комплемента. Гибель стафилококков под влиянием полиморфноядерных лейкоцитов ингибируется свободным (белково-связанным) железом, но не гемоглобином или каталазой. Также, в состав смешанной слюны поступают эритроциты, при распаде которых высвобождается небелковое железо, повышая общий уровень в этой среде. Вероятно, такое значимое увеличение концентрации железа в НРЖ отражает интенсивность оксидативного стресса, с одной стороны и проявление компенсаторной реакции при недостатке кислорода (гипоксии), с другой стороны, способствуя прогрессивному росту микрофлоры и поддержанию воспалительных процессов в ротовой полости [21, 23].

Магний, являясь активатором для множества ферментативных реакций и важнейшим внутриклеточным элементом, участвует в обменных процессах, тесно взаимодействуя с калием, натрием, кальцием. Нормальный уровень магния в организме необходим для обеспечения «энергетики»

жизненно важных процессов, регуляции нервно-мышечной проводимости, тонуса гладкой мускулатуры. Магний стимулирует образование белков, регулирует хранение и высвобождение АТФ, снижает возбуждение в нервных клетках. Доказано, что магний укрепляет иммунную систему, обладает антиаритмическим действием, способствует восстановлению тонуса после физических нагрузок. Прогрессивное снижение уровня магния (1,98–2,92 раза), по нашему мнению, связано с тем, что магний является физиологическим антагонистом кальция и находится с ним в конкурентных отношениях.

Кальций является важнейшим составляющим организма (содержание около 1,4% от массы тела). Доминирующее положение кальция в конкуренции с другими металлами и соединениями на всех этапах метаболизма определяется его химическими особенностями - наличием двух валентностей и сравнительно небольшим атомным радиусом. Кальций, обладая высокой биологической активностью, выполняет в организме многообразные функции: регуляция внутриклеточных процессов; регуляция проницаемости клеточных мембран; регуляция процессов нервной проводимости и мышечных сокращений; поддержание стабильной сердечной деятельности и свертываемости крови; формирование костной ткани; минерализация зубов; участие в процессах свертывания крови; поддержание гомеостаза (ионное равновесие, осмотическое давление в жидкостях организма). Можно предположить, что увеличение уровня кальция в НРЖ при ЗЧА у детей и подростков напрямую зависит от степени морфофункциональных изменений, связанных с перестройкой зубочелюстного аппарата, а также повышением уровня железа, белка, ненасыщенных жирных кислот вследствие изменения ротового пищеварения. Рост содержания указанных веществ (железо, белки,

ненасыщенные жирные кислоты) обеспечивает устойчивое поддержание высокого уровня кальция в смешанной слюне [25, 26].

Калий является основным внутриклеточным катионом, причём концентрация в клетках на порядок выше, чем вне клеток. Систематизируя данные отечественных и зарубежных авторов, можно систематизировать основные функции калия в организме: поддержание постоянства состава клеточной и межклеточной жидкости; поддержание рН равновесия; обеспечение межклеточных контактов; обеспечение биоэлектрической активности клеток; поддержание нервно-мышечной возбудимости и проводимости; участие в нервной регуляции сердечных сокращений; поддержание водносолевого баланса, осмотического давления; роль катализатора при обмене углеводов и белков; поддержание нормального уровня кровяного давления; участие в обеспечении выделительной функции почек. С нашей точки зрения, рост калий-экскреторной функции слюнных желез при увеличении выраженности морфофункциональных изменений в зубочелюстном аппарате, свидетельствует не только о снижении общей функциональной активности, но и нарушении вегетативного гомеостаза организма.

Выводы

Таким образом, установление корреляционных связей между элементным составом и уровнем кислотно-основного равновесия смешанной слюны у детей и подростков с зубочелюстными аномалиями является информативным, диагностически значимым тестом в определении степени морфологических изменений челюстно-лицевой области, адекватно отображая выраженность патологических процессов. Корреляционный анализ позволяет наиболее полно судить о динамике, а также особенностях взаимосвязи показателей элементного состава и уровня рН смешанной слюны, направленных на мобилизацию адаптационных механизмов.

Адекватным показателем, отражающим интенсивность морфологических и функциональных нарушений при зубочелюстных аномалиях у детей и подростков, является увеличение градиента соотношения железо/магний в ротовой жидкости, а также снижение градиента соотношения калий/кальций при сдвиге рН в щелочную сторону.

Дети и подростки, имеющие выраженные зубочелюстные аномалии, за счёт достоверного повышения экскреции железа, снижения содержания магния, сдвига рН в щелочную сторону, находятся в состоянии оксидативного стресса. Изменение кислотно-основного равновесия в щелочную сторону, а также длительный оксидативный стресс усиливают элементный дисбаланс в смешанной слюне, формируя предрасположенность к иммунопатологическим состояниям.

Список литературы

- 1. Агаджанян Н.А. Экологический портрет человека и роль микроэлементов / Н.А. Агаджанян, М.В. Велданова, А.В. Скальный. М.: Медицина, 2009. 236 с.
- 2. Доменюк Д.А. Оценка корреляционных связей между электролитным составом и показателями местного иммунитета смешанной слюны у пациентов с аномалиями зубочелюстной системы (Часть I) // Институт стоматологии. -2014. № 2 (63). C. 66–68.
- 3. Доменюк Д.А. Системный анализ факторов риска возникновения и развития кариеса у детей с аномалиями зубочелюстной системы (часть I) / Д.А. Доменюк, Б.Н. Давыдов // Стоматология детского возраста и профилактика. -2014. T. XIII, № 3 (50). C. 40-48.
- 4. Доменюк Д.А., Дмитриенко С.В., Ведешина Э.Г. Морфометрический анализ формы верхних зубочелюстных дуг с физиологической окклюзией постоянных зубов // Институт стоматологии. $2015. M \cdot 2. C. 1-3.$
- 5. Крамарь В.С., Дмитриенко С.В., Климова Т.Н. Микроэкология полости рта и её роль в развитии стоматологических заболеваний. – Волгоград, 2010. – 250 с.
- 6. Кудрин А.А. Иммунофармакология микроэлементов / А.А. Кудрин, А.В. Скальный, А.А. Жаворонков. М.: КМК, 2010. 456 с.
- 7. Персин Л.С. Стоматология детского возраста / Л.С. Персин, В.М. Елизарова, С.В. Дьякова. М.: Медицина, 2003.-640 с.
- 8. Скальный А.В. Биоэлементы в медицине / А.В. Скальный, И.А. Рудаков. М.: Издательский дом «Оникс 21 век», 2004.-272 с.
- 9. Dmitrienko S.V., Domenyuk D.A., Kochkonyan A.S. Modern classification of dental arches // Archiv euromedica. 2014. Vol. 4, No. 2. P. 14–16.
- 10. Dmitrienko S.V., Domenyuk D.A., Vedeshina E.G. Shape individualization in lower dental arches drawn on basic morphometric features // Archiv euromedica. -2015. Vol. 5, N_2 1. P. 11–15.