щью шприца. Процедуру промывки, включая отсасывание с помощью шприца, повторяют еще раз, после чего продукт сушат в вакууме.

Нами усовершенствован известный способ получения тетрахлорида теллура, который значительно упрощает процедуру выделения тетрахлорида теллура и исключает использование дорогостоящего аргона и трудоемкую процедуру отсасывания гексана из реакционной массы с помощью шприца.

В усовершенствованном способе получения тетрахлорида теллура используется меньшее количество хлористого сульфурила (мольное соотношение теллура и хлористого сульфурила 1:6). После растворения теллура и завершения реакции полученный тетрахлорид теллура фильтруют на воронке Шотта (фильтрование с отсасыванием в вакууме 150-180 мм рт. ст), отделяя избыток хлористого сульфурила в колбу Бунзена, которая подсоединена к насосу. Собранный избыток хлористого сульфурила можно использовать в реакции повторно. Тетрахлорид теллура промывают на воронке Шотта один раз пентаном и сушат в вакууме. Следует отметить, что очистка тетрахлорида теллура на воронке Шотта значительно эффективнее, чем трудоемкая процедура промывания, описанная в работе [1].

Работа выполнена по проекту Российского научного фонда № 14–13–01085.

Список литературы

1. Petragnani N., Mendes S.R., Silveira C.C. Tellurium tetrachloride: an improved method of preparation // Tetrahedron Letters. -2008. - Vol. 49. - P. 2371-2372.

АНАЛИЗ УСТАНОВКИ РИФОРМИНГА БЕНЗИНОВЫХ ФРАКЦИЙ СО СТАЦИОНАРНЫМ СЛОЕМ КАТАЛИЗАТОРА

Шайхимова Л.А., Леденев С.М.

Волгоградский государственный технический университет, Волгоград, e-mail: layra_kaspui@bk.ru

Каталитический риформинг занимает ведущую роль в производстве высокооктановых бен-

зинов. Развитию риформинга придается большое значение. Это обуславливается не только стремлением обеспечить конкурентоспособность автомобильных бензинов, но и необходимостью повышения эффективности действующих установок риформинга.

В данной работе был произведен анализ действующей установки риформинга бензиновых фракций ПР-22-35-11/1000 с производительностью 1 млн. т/год на катализаторе R-86 компании «UOР» при температуре 503-532°С и давлении 1,56-1,96 МПа в трех последовательно соединенных реакторах, которая позволяет получать риформат с октановым числом по исследовательскому методу (ОЧИМ) до 97,5 и суммарным содержании ароматических углеводородов до 67,1% (масс.) при его выходе до 85,8%. В результате было установлено, что при реализации рассмотренного способа получения стабильного катализата в блоке риформинга возникают проблемы, наиболее значительными из которых являются относительно невысокий суммарный выход катализата (85,8% масс.) и относительно низкое октановое число риформата 97,5 по исследовательскому методу (по и.м.).

На основании проведенного анализа и патентно-информационного поиска, было установлено, что совершенствование установки может быть направлено на замену действующего катализатора R-86 на отечественный катализатор ПР-81, разработанный в Институте проблем переработки углеводородов СО РАН, что позволит повысить суммарный выход катализата до 89–92% (увеличение производительности) и увеличить октановое число риформата до 102 по исследовательскому методу (по и.м.) (улучшение качества) [1].

Таким образом, проведенный структурный анализ позволил предложить пути совершенствования работы установки риформинга бензиновых фракции.

Список литературы

1. Белый А.С., Смоликов М.Д., Кирьянов Д.И., Проскура А.Г., Удрас И.Е., Дуплякин В.К., Луговской А.И., Логинов С.А., Ващенко П.М. // Катализ в промышленности. – 2013. – № 6. – С. 36–40.