CHEMICAL SCIENCES

УДК 546.863.22

ЗД МОДЕЛИРОВАНИЕ ПОВЕРХНОСТЕЙ КРИСТАЛЛИЗАЦИИ И РАССЛОЕНИЯ ЖИДКИХ ФАЗ В ТРОЙНОЙ СИСТЕМЕ Cu–Tl–Sn

¹Мамедов А.Н., ²Салимов З.Э., ³Кулиева С.А., ¹Бабанлы М.Б.

¹Институт катализа и неорганической химии им. акад. М. Нагиева, НАНА,

Баку, e-mail: babanly_mb@rambler.ru;

²Азербайджанский технический университет, Баку;

³Азербайджанский государственный педагогический университет, Баку

Проведен расчет и 3D моделирование поверхности кристаллизации меди в интервале концентраций $x_{c_u} = 0.85-1.0$ моль доли по разрезам $y_{\Pi} = x_{\Pi}/(x_{s_n} + x_{\Pi}) = 0-1.0$ и поверхности расслоения жидких сплавов в интервале концентраций $x_{s_n} = 0.17-0.85$ моль доли по разрезам $y_{c_u} = x_{c_u}/(x_{c_u} + x_{\Pi}) = 0-1.0$ в тройной системе Cu–Tl–Sn. Уравнение расчета включает аналитические выражения ликвидуса и расслоения дойных граничных систем и функцию, определенную по ограниченному количеству экспериментальных данных ДТА для тройной системы Cu–Tl–Sn. Полученные аналитические зависимости T = f(x, y) позволили рассчитать и 3D визуалировать поверхности кристаллизации меди и расслоения жидких сплавов Cu–Tl–Sn с помощью программ grafikus.ru/plot3d и OriginLab2015.

Ключевые слова: поверхности кристаллизации и расслоения, система Cu-Tl-Sn, 3D моделирование

3D MODELING OF THE CRYSTALLIZATION AND IMMISCIBILITY SURFACES IN THE TERNARY SYSTEM Cu–Pb–Sn

¹Mamedov A.N., ²Salimov Z.E., ³Quliyeva S.A., ¹Babanly M.B.

¹Catalysis and Inorganic Chemistry Institute of ANAS, Baku, e-mail: babanly_mb@rambler:ru; ²Azerbaijan Technical University, Baku; ³Azerbaijan Pedagogical Universities, Baku

The calculation and 3D modeling of crystallization surface of copper in the concentration $x_{cu} = 0.855-1.0$ mole fraction for section $y_{T1} = x_{TT}/(x_{Sn} + x_{T1}) = 0-1.0$ and immiscibility surface in the concentration $x_{Sn} = 0-0.55$ mole fraction for section $y_{Cu} = x_{Cu}/(x_{Cu} + x_{T1}) = 0-1.0$ in ternary system Cu–Tl–Sn were carried out. The equation for calculating includes analytical expressions of liquidus and immiscibility of boundary binary systems and function defined on a limited number of DTA data for the ternary system Cu–Tl–Sn. Using grafikus.ru/plot3d and OriginLab2015 computer programs the primary crystallization surface of copper and immiscibility surface alloys as the analytical dependence T = f(x, y) were modeled and 3D visualized.

Keywords: crystalization and immiscibility surfaces, Cu-Tl-Sn system, 3D modeling

Твердые растворы и интерметаллические фазы тройной системы Cu-Tl-Sn являются перспективными материалами в связи с их высокой электро- и теплопроводностью, коррозионной устойчивостью [4]. Фазовая диаграмма этой тройной системы, изученная в [5], находится в соответствии с характером фазовых равновесий граничных двойных систем Cu-Tl, Cu-Sn и Tl-Sn [7, 8]. В системе Си-ТІ имеет место расслоение жидких сплавов. При температуре монотектического равновесия 1241 К расслоение на жидкости охватывает область составов $x_{Cu} = 0,17-0,855$. Критическая температура растворимости равна 1533 К. Системы Cu-Sn и Tl-Sn характеризуются образованием ограниченных твердых растворов и интерметаллических фаз с областями гомогенности. Субсолидусная фазовой диаграмма тройной системы Cu-Tl-Sn, в основном, состоит из фаз на основе меди.

Целю данной работы является аналитический расчет и 3D моделирование поверхности кристаллизации меди и поверхности расслоения жидких сплавов в тройной системе Cu–Tl–Sn. Использована расчетная методика, апробированная в [1–3, 6] на системах Cu–Tl–Pb и Cu–Tl–Ge.

Результаты расчета и обсуждение

Моделирование поверхности кристаллизации меди

Уравнение аналитической модели поверхности кристаллизации компонента 1 компонента тройной системы 1–2–3 имеет вид

$$T_{(123)}(x, y) = y_2 \cdot T_{1(12)}(x_1) + (1 - y_2)T_{1(13)}(x_1) + + ax_1(1 - x_1)^2 y_2(1 - y_2),$$
(1)

где *T* – температура, в К; $y_2 = x_2/(1 - x_1)$; $(1-y_2) = x_3/(1 - x_1)$; *a* – определяется по 3–5 измерениям ДТА для тройной системы. $T_{1(12)}(x_1)$ и $T_{1(13)}(x_1)$ – аналитические выражения ликвидуса двойных граничных систем.

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 2, 2016 Уравнение (1) применительно к системе Cu–Sn–Tl имеет вид

$$T(Cu-Sn-Tl) = y_{Sn}T(Cu-Sn)(x_{Cu}) + + (1 - y_{Sn})T(Cu-Tl)(x_{Cu}) + + ax_{Cu}(1 - x_{Cu})y_{Sn}(1 - y_{Sn}),$$
(2)

где
$$y = x_{TI}/(1 - x_{Cu}); (1-y) = x_{Sn}/(1 - x_{Cu});$$

 $T(Cu-TI) = 1358 - 1480(1 - x_{Cu})y + 1358 - 1480(1 - x_{Cu})y + 1358 - 1480(1 - x_{Cu})y + 1480(1 - x$

+
$$4800(1 - x_{CP})^2;$$
 (3)

$$T(\text{Cu-Sn}) = 1358 - 600(1 - x_{\text{Cu}}) - - 8800(1 - x_{\text{Cu}})^2.$$
(4)

Соотношения (3) и (4) с высокой точностью аппроксимируют кривые ликвидуса меди в двойных граничных системах Cu–Tl и Cu–Sn (таблица).

Подставляя аналитические выражения кривых ликвидуса меди в двойных гра-

ничных системах и значение параметра а в уравнение (2) получаем:

$$T = 1358 - 1480(1 - x_{Cu})y + 4800(1 - x_{Cu})^2y - 600(1 - x_{Cu})(1 - y) - 8800(1 - x_{Cu})^2(1 - y) + 400x_{Cu}(1 - x_{Cu})y(1 - y),$$
(5)

где
$$x = x_{Cu}; y = x_{Tl}/(1 - x_{Cu}).$$

Для упрощения функции T = f(x, y)в компьютерной программе уравнение (5) использовали в виде:

$$T = 1358 - 1480xy + 4800x^2y - 600x(1 - y) - 8800x^2(1 - y) + 400x(1 - x)y(1 - y),$$
(6)

где $x = (1 - x_{Cu}) = 0 - 0,15; y = 0 - 1.$

Поверхность кристаллизации меди в тройной системе Cu–Tl–Sn в интервале концентрации $x_{Cu} = 0.845-1.0$, вычисленная по уравнению (6), визуалирована на рис. 1.

Экспериментальные и расчетные данные для кривых кристаллизации меди в системах Cu–Tl и Cu–Sn в интервале концентрации $x_{Cu} = 0.85-1.0$

x _{Cu} (Cu–Tl)	Т, К		r (Cu Sp)	Т, К	
	Эксп. [6]	Расчет (3)	x_{Cu} (Cu–SII)	Эксп. [6]	Расчет (4)
1,0	1358	1358	1,0	1358	1358
0,95	1298	1296	0,95	1310	1306
0,90	1256	1258	0,90	1207	1210
0,855	1241	1244	0,85	1070	1070
T,K 1400 1358 1350 1350 1350					
$\begin{array}{c} 1300 \\ 1300 \\ 1250 \\ 1200 \\ 1150 \\ 1100 \\ 1050 \\ 1000 \\ \mathbf{Cu} \end{array} \qquad \mathbf{L} + \alpha(\mathbf{Cu}) \qquad \mathbf{L} + \alpha(\mathbf{Cu}) \qquad 1241 \\ 1200 \\ 1150 \\ 1100 \\ 1050 \\ 1000 \\ \mathbf{Cu} \end{array} \qquad \mathbf{L} + \alpha(\mathbf{Cu}) \qquad \mathbf{L} + \alpha(\mathbf$					300 250 200 150 100 050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Рис. 1. 3D модель поверхности кристаллизации меди в системе Cu-Tl-Sn

Моделирование поверхности расслоения

Система Cu–Tl имеет фазовую диаграмму с монотектическим (1241 K) и эвтектическим (566 K) равновесиями. При температуре монотектики, область несмешиваемость расположена в интервале концентраций $x_{cu} = 0,17-0,845$. Критическая температура растворимости (1533 К) уменьшается с добавлением олова [7]. Для расчета и моделирования поверхности расслоения жидких сплавов в тройной системе Cu–Tl–Sn использован следующий подход.

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 2, 2016

Рис. 2. 3D модель поверхности расслоения жидких сплавов в системе Cu–Tl–Sn

Вначале определили аналитическое выражение кривой расслоения в системе Cu–Tl:

$$T, K = 1241 + 3330 \times (0.855 - v)(v - 0.17),$$
(7)

где $y = x_{Cu}/(x_{Cu} + x_{Tl})$. Далее по экспериментальным данным измерений ДТА трех симметрично расположенных составов тройной системы определили функцию зависимости критической температуры растворимости от концентрации олова:

$$T, K = 1241 + 3330 \times (0,855 - y)(y - 0,17)(0,55 - x_{s_0})^{0.5}, \quad (8)$$

которая позволила с высокой точностью вычислить и визуалировать поверхности расслоения в тройной системе Cu–Pb–Tl в интервале концентраций $y_{Cu} = 0,17-0,855$; $x_{Sn} = 0-0,55$ (рис. 2).

3D графики на рис. 1 и 2 отражают координаты моно- нонвариантных равновесий в системе Cu–Tl–Sn в температурной области 1000–1550 К [5]. В связи с высокой температуры затвердевания меди и его интерметаллидов, при охлаждении вначале выделяется медь или α (Cu), далее β (Cu) с малой областью гомогенности (рис. 1). Критическая температура растворимости в жидком состоянии с увеличением содержания олово уменьшается с 1533 К и достигает 870 К при $x_{sn} = 0,55$ (рис. 2).

Заключение

Таким образом, на основании фазовых диаграмм граничных бинарных систем с использованием ограниченного числа данных ДТА получены в явном виде аналитические зависимости T = f(состав), позволившие рассчитать и 3D моделировать поверхности кристаллизации меди и расслоения жидких сплавов в системе Cu–Tl–Sn. Полученные 3D модели могут быть использованы для выбора условий получения сплавов системы Cu–Tl–Sn с заданными свойствами.

Список литературы

1. Мамедов А.Н., Салимов З.Э, Бабанлы М.Б. 3D моделирование поверхности расслоения жидких фаз в тройной системе Cu–Tl–Pb // Аз. химич. журнал. – 2014. – № 4. – С. 12–15.

2. Мамедов А.Н., Салимов З.Э., Кулиева С.А., Бабанлы М.Б., 3D моделирование поверхности кристаллизации меди в тройной системе Cu-Pb-Tl // Успехи современного естествознания. – 2015. – № 1. – С. 804–807.

 Мамедов А.Н. Термодинамика систем с немолекулярными соединениями. – LAP. Germany 2015. – 124 р.

4. Осинцев О.Е, Федоров В.Н., Медь и сплавы меди. Машиностроение. – М., 2004.

5. Салимов З.Э., Мамедов З.Г., Бабанлы М.Б. Т-х-у фазовая диаграмма системы Cu-Tl-Sn и ее некоторые изотермические сечения // Научные труды АзТУ // Фундаментальные науки. – 2013. – № 2. – С. 139–145.

6. Mamedov A.N., Salimov Z.E., Mashadiyeva L.F., Babanly M.B. Thermodynamic Calculation and 3D Modeling of the Liquidus and Immiscibility Surfaces of the Ge–Cu– Tl System // American Chemical Science Journal. – 2016, Vol. 10(2). – P. 1–5. – DOI: 10.9734/ACSJ/2016/21808.

7. Massalski T.B. Ed. Binary alloy phase diagrams. Second edition. ASM international, Materials Park. - Ohio. 1990.

 Okomato H. Desk Handbook: Phase Diagrams for Binary Alloys. Second edition. – ASM international, 2010. – 809 p.