ТУРМАЛИН В ГРАНИТОИДАХ ГОРНОГО АЛТАЯ

Гусев А.И.

Алтайский государственный гуманитарно-педагогический университет им. В.М. Шукшина, Бийск, e-mail: anzerg@mail.ru

В статье приведены данные по химическому составу турмалинов пералюминиевых гранитоидов Горного Алтая. Турмалин относится к шерлу и образует рассеянную вкрапленность в породах и нодули. Выделены 2 группы гранитоидов: 1 – мусковит-турмалиновые лейкограниты с широкими возрастным интервалом от раннего девона до ранней юры и 2 – двуслюдяные лейкограниты с турмалином. Первые формировались за счёт частичного плавления турмалин-обогащённых гнейсов и кристаллизация турмалина не подчинялась заряд-радиус-контролируемому поведению химических элементов, а вторые являются более продвинутыми в отношении фракционирования в расплавах. Величины тетрадного эффекта фракционирования РЗЭ Мтипа коррелируются с концентрациями вольфрама в турмалинах.

Ключевые слова: пералюминиевые лейкограниты, турмалин (шерл), частичное плавление турмалинобогащённых гнейсов, тетрадный эффект фракционирования РЗЭ М- типа

TOURMALINE IN GRANITOIDS OF MOUNTAIN ALTAI

Gusev A.I.

The Shukshin Altai State Humane-Pedagogical University, Biisk, e-mail: anzerg@mail. Ru

Data on chemical composition of tourmaline the peraluminous granitoids Mountain altai lead. Tourmaline treat to schorl and form disseminated insets in rocks and nodules. Two groups granitoids detached: 1 – muscovite-tourmaline leucogranites with wide age interval from Early Devonian to Early Jurassic and 2 – two-micas leucogranites with tourmaline. The first group formed for partial melting tourmaline-rich gneiss and crystallization of tourmaline did not submit to chard-radius-control behavior of chemical elements, but the second group appear more advanced in ratio of fractionation in melts. Sizes of tetradic effect fractionation of REE M-type correlated with concentrations of tungsten in tourmalines.

Keywords: peraluminous leucogranites, tourmaline (schorl), partial melting of tourmaline-rich gneiss, tetradic effect fractionation of REE M-type

Турмалин в гранитоидах Горного Алтая встречается не часто. Однако в значимых весовых количествах он отмечен в мусковит-турмалиновых лейкогранитах Чиндагатуйского, Орочаганского, двуслюдяных гранитах массивов Джулалю и Калгутинском, мусковиттурмалиновых лейкогранитах Тоштузекского массива, в мусковит-турмалиновых лейкогранитах Кумирского штока, Ак-Алахинского массива и апофизе Синюшинского массива на Колыванском медно-молибден-вольфрамовом месторождении. Во всех случаях появления турмалина в породах отмечается аномальные параметры флюидного режима и значительная активность таких летучих компонентов, как В, F, H,O, а также пространственная и парагенетическая связь этих образований и различных типов оруденения: W, Мо, Си, Sc, Au, редких земель. Считается, что граниты с относительно высокими концентрациями бора и магматическим турмалином появляются в типичных коллизионных зонах и, как правило, отвечают В-обогащённым источникам регионов [10]. Из сказанного следует актуальность изучения турмалиновых гранитоидов региона. Цель исследований изучение состава и особенностей геохимии и петрологии турмалиновых гранитоидов Горного Алтая.

Результаты исследования и их обсуждение

Описание и химический состав гранитоидов с турмалином Горного Алтая приведен во многих работах [3, 4]. Отличительной особенностью турмалин-содержащих гранитоидов является их пересыщенность глинозёмом (индекс Шенда ASI превышает 1,1). Все турмалин-содержащие интрузивы могут быть объединены в 2 группы: 1 – турмалинсодержащие двуслюдяные лейкограниты с ассоциацией минералов мусковит-биотиттурмалин-кварц-полевые шпаты (редко гранат) (интрузивы Джулалю, Калгутинский) и 2 – мусковит-турмалиновые лейкограниты с ассоциацией турмалин-мусковит-кварцполевые шпаты, иногда гранат (интрузивы Тоштузек, Чиндагатуй, Ак-Алахинский, апофиза Синюшинского массива, Кумирский шток). Возраст интрузий первой группе – раннеюрский, а второй – ранний девон, ранний триас, раннняя юра. В обоих группах турмалин встречается в виде тонкой вкрапленности (1,5 – 2,5 мм в поперечнике), нодулей размерами от 0,5 до 3 см в поперечнике. Кристаллы турмалина идиоморфны, гипидиоморфны. Отмечаются как зональные, так и не зональные индивиды.

628

■ GEOLOGO-MINERALOGICAL SCIENCES ■

Химический состав турмалинов (оксиды, F, B – в%, остальные элементы – в г/т)

	1	2	2	1	5	6	7	8
SiO	41.5	41.3	41.2	30.0	38.3	35.8	35.0	36.2
T:O	41,5	41,5	41,2	0.7	0.6	0.6	0.2	0.4
1102	0,5	1,2	0,8	0,/	0,6	0,6	0,3	0,4
Al_2O_3	31,9	32,2	32,1	33,6	32,3	33,0	33,1	33,2
Fe ₂ O ₃	19,3	15,1	18,9	14,2	14,0	10,1	9,95	9,98
MnO	0,12	0,4	0,7	0,1	0,13	0,05	0,5	0,45
MgO	1,25	2,2	1,2	2,3	2,1	4,4	4,6	4.55
CaO	0,66	0,63	1,1	0,2	0,1	0,4	0,7	0,7
Na ₂ O	2,1	1,9	0,9	1,6	1,2	1,9	2,0	0,8
K,O	0,1	0,5	0,1	0,1	0,05	0,15	0,2	0,25
F	0,7	0,3	0,2	1,0	1,2	1,7	1,8	1,8
В	2,8	2,9	2,85	2,82	2,88	2,96	3,0	2,97
V	45,7	65,4	28,3	75,7	65,1	220,3	218,5	220,4
Cr	22,8	45,6	43,6	65,6	65,3	43,6	45,7	44,8
Со	8,7	11,5	4,7	16,3	13,1	4,9	5,6	5,2
Ni	7,9	12,6	18,5	25,6	15,6	23,7	26,6	24,9
Cu	1,7	2,6	12,3	3,8	4,8	243	232	225
Zn	23,7	12,8	16,1	72,6	62,1	628	616	632
Rb	31,6	30,5	44,9	24,7	24,0	90,2	86,3	87,5
Sr	146	142	229	125	145	176	185	191
Nb	4,1	4,2	9,8	4,6	4,8	1,2	1,4	1,3
Cs	0,66	0,64	8,54	0,65	0,69	2,4	2,6	2,5
Ba	76	65,8	875	61,6	65,2	89,4	90,7	91,4
Pb	7,1	6,2	45,2	5,6	7,6	45,1	44,3	46,8
Th	1,2	1,3	8,27	1,32	1,36	6,0	5,6	6,1
La	3,25	3,51	6,6	3,53	3,55	6,2	5,85	5,8
Ce	9,8	9,9	15,8	7,7	7,8	18,3	15,8	15,1
Pr	1,1	1,0	17,2	1,1	1,2	2,2	2,4	2,35
Nd	2,2	2,9	59,1	2,3	2,5	8,8	7,6	7,5
Sm	2,9	2,8	16,0	2, 5	2,7	1,25	1,23	1,21
Eu	0,66	0,9	0,35	0,85	0,65	0,37	0,34	0,35
Gd	2,7	2,8	4,75	2,66	2,69	1,05	0,98	0,95
Tb	0,52	0,52	0,58	0,54	0,56	0,15	0,16	0,17
Dy	4,8	3,7	3,01	3,65	3,8	7,8	7,7	6,8
Но	0,4	0,65	0,64	0,7	0,5	0,17	0,15	0,18
Er	1,3	2,1	2,2	2,0	1,4	0,63	0,64	0,66
Tm	0,3	0,33	0,48	0,35	0,32	0,11	0,12	0,13
Yb	3,7	2,7	4,16	3,97	2,7	1,2	1,15	1,18
Lu	0,32	0,39	0,97	0,32	0,34	0,27	0,29	0,28
Y	25,3	24,8	11,42	22,5	24,1	4,5	4,34	5,2
Ga	15,7	15,2	12,4	13,2	15,2	3,1	2,37	2,4
Zr	188	186	21,1	158	184	9,4	9,0	9,5
Sc	5,2	4,1	2,3	7,2	6,2	2,0	2,1	1,8
Hf	4,9	3,8	1,43	3,9	4,3	0,27	0,26	0,25
Та	0,7	0,42	3,4	0,4	0,5	11,2	11,16	11,8
Мо	11,2	11,1	22,5	13,7	18,2	45,8	44,5	43,6
Sb	4,7	3,2	4,9	4,8	4,9	5,2	4,8	4,5
Sn	101,4	66,6	129	96,8	106,4	131	128	129
Be	1,7	1,9	5,2	1,8	1,9	52,4	51,1	73,7
W	33,2	31,2	24,1	34,7	39,2	65,6	81,6	76,8
U	0,61	0,69	2,4	0,65	0,66	0,7	0,67	0,71
Li	56,9	46,7	98,4	66,7	86,9	99,6	98,6	96,7

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 3, 2016

Окончание таблицы												
	1	2	3	4	5	6	7	8				
Ge	2,51	1,53	4,1	1,55	3,51	8,2	7,8	8,1				
Ag	0,06	0,03	0,1	0,02	0,06	0,2	0,1	0,12				
Bi	1,3	0,95	2,8	0,9	1,4	2,8	2,6	2,9				
Cd	0,3	0,21	0,3	0,26	0,31	0,3	0,25	0,28				
∑TR	59,3	59,0	133,3	54,7	54,8	53,0	48,8	47,9				
TE ₁₃	1,7	1,26	1,0	1,29	1,41	2,01	2,23	2,06				

Примечание. Анализы выполнены спектрально-силикатным методом для оксидов и лазерно-абляционным методом с индуктивно-связанной плазмой ICP-MS и ICP-AES в Лаборатории ОИ МиГ СО РАН (г. Новосибирск). ∑ TR – сумма редкоземельных элементов. TE_{1,3} – тетрадный эффект фракционирования РЗЭ как среднее между первой и третьей тетрадами по [9]. Мусковиттурмалиновые лейкограниты: 1 – массива Чиндагатуй, 2 – Тоштузеского массива, 3 – апофизы Синюшинского массива Колыванского рудного поля, 4 – вкрапленность, 5 – нодули Кумирского штока; двуслюдяные лейкограниты с турмалином: 6 – массива Джулалю, 7 – Калгутинского массива (Калгутинское месторождение), 8 – Калгутинского массива (Южно-Калгутинское месторождение).

Рис. 1. Бинарные диаграммы (x^x/(x^x+Na) – Mg/Mg+Fe) (a) и Fe – Mg (б) в атомных количествах по [7] для турмалинов пералюминиевых гранитоидов Горного Алтая

Химический состав турмалинов представлен в таблице.

Согласно номенклатуре турмалинов анализируемые индивиды относятся к щелочным разностям по [7].

Параметр ξ^{x} представляет собой пропорцию вакансий элементов в X – положении. Расчёт структурных параметров турмалина осуществлялся на основании 15 катионной ячейки.

Турмалины пород отвечают номерам в таблице.

Все составы турмалинов на классификационных диаграммах попадают в поле шерлового турмалина и оксишерлового фоитита (рис. 1). Следует отметить, что турмалины первой группы раннеюрского возраста (Калгутиннские и Джулалю) по составу приближаются к границе дравитового ряда. Эта группа турмалинов отличается самыми низкими концентрациями суммы РЗЭ, Nb, Y, Zr, Hf, Ga и повышенными содержаниями Mg, F, W, Ge, Ag, V (таблица). В этой же группе турмалинов и проявлен тетрадный эффект фракционирования РЗЭ (ТЭФ РЗЭ) М- типа с самыми высокими величинами.

Выводы

Выделенные две группы пералюминиевых гранитоидов различаются по многим параметрам. Различаются они и по соотношению некоторых элементов. Так по соотношению Y/Ho – Zr/Hf указанные группы занимают различную позицию относитель-

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 3, 2016 но подчинения заряд-радиус-контролируемого поведения химических элементов (рис. 2). Если турмалин мусковит-турмалиновых гранитоидов крситаллизовался при не соблюдении заряд-радиус-контролируемого поведения элементов, то турмалин двуслюдяных лейкогранитов с турмалином отвечал поведению элементов заряд-радиус-контролируемого (CHArge-and-Radius-Controlled) по [5].

Рис. 2. Диаграмма соотношений Y/Ho – Zr/Hf no [5] и для турмалинов пералюиниевых гранитоидов

Серым фоном на рисунках показано поле HARAC (CHArge-and-Radius-Controlled) по [5].

Условные обозначения под таблицей.

В связи с тем, что выделенные группы интрузий с турмалином отличаются различными парагенезисами сосуществующих минералов, то возникает вопрос о стабильности в отношении AFM (соотношение щёлочей, железа и магния) с разными фазами и влияния общего состава источника плавления и источника бора. Появление двуслюдяных и турмалиновых лейкогранитов может быть связано с различными причинами: 1 – мусковит-турмалиновые лейкограниты могут быть результатом фракционирования двуслюдяных лейкогранитов [14, 15]; 2 – два типа лейкогранитов могут быть результатом плавления различных фракций из одного и того же источника [6]: 3 – бимодальностью, отражающей различные протолиты, за счёт которых плавились двуслюдяные лейкограниты и мусковит-турмалиновые лейкограниты [8, 16]. Кроме того, существует мнение о том, что пералюминиевые составы турмалин-содержащих лейкогранитов характеризуются соотношением изотопов стронция (Sr > 0,710) [11, 13] и соотношением изотопов кислорода ($\delta^{18}O > + 10\%$), подтверждающие, что они были генерированы путём частичного плавления метаосадочных пород. Последнее положение подтверждается и нашими данными по Горному Алтаю. Текстурные характеристики и химические вариации подтверждают, что турмалин во всех случаях кристаллизовался в течение относительно ранней магматической стадии в субсолидусных условиях. Согласно данных [12], ассоциация биотит ± кордиерит и турмалин с мафическими фосфатными минералами (апатитом) могут кристаллизоваться в суперсолидусных условиях. Пералюминиевые двуслюдяные и мусковит-турмалиновые лейкограниты формировались в эпизональных условиях (при давлениях ~ 200–300 МРа) и температурах от 650 до 800 °C на основании определения температур насыщения циркона по геотермометру [18].

Рис. 3. Диаграмма W – TE_{1'3} для пералюминиевых лейкогранитов с турмалином (составлена автором)

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 3, 2016 Оценка потенциала лейкогранитов на вольфрам может быть осуществлена путём сравнения соотношений величины тетрадного эффекта фракционирования РЗЭ М-типа и концентраций вольфрама. Известно, что проявление ТЭФ РЗЭ М-типа обусловлено высокой активностью и насыщенностью магматогенных флюидов фтор-комплексами, являющихся переносчиками металлов во флюидах [2]. На диаграмме соотношений W в турмалине и ТЭФ РЗЭ М-типа чётко видно, что увеличение значений ТЭФ РЗЭ сопровождается повышением концентраций вольфрама в турмалине (рис. 3).

ТЕ_{1'3} – тетрадный эффект фракционирования редкоземельных элементов как среднее между первой и третьей тетрадами по [9]. Серая область на диаграмме выделена на основании средних содержаний вольфрама в изверженных породах по [1]. Содержания вольфрама в хондритах по [17].

Условные обозначения см. под таблицей.

В итоге можно заключить, что турмалин в пералюминиевых гранитоидах Горного Алтая относится к шерлу. Пералминиевые гранитоиды формировались при давлениях $\sim 200-300$ MPa и температурах от 650 до 800°С. Формирование пералюминиевых мусковит-турмалиновых лейкогранитов, для которых наблюдается значительная инкорпорация бора в расплав обеспечивалась частичным плавлением метаосадочных гнейсов, обогащённых турмалином. Кристаллизация такого турмалина не отвечало заряд-радиус-котролируемого поведения химических элементов. Менее обогащённые бором гранитные расплавы, в которых основную роль играл биотит, давали двуслюдяные лейкограниты с турмалином. Такие расплавы обычно генерируются путём частичного плавления и высокой степени фракционирования в расплавах и отвечало заряд-радиус-контролируемому поведению химических элементов. Потенциальная рудоносность гранитоидов определяется корреляцией концентраций вольфрама и величины ТЭФ РЗЭ М-типа. Более перспективны двуслюдяные лейкограниты с турмалином массивов Джулалю и Калгутинского.

Список литературы

1. Виноградов А.П. Средние содержания химических элементов в главных типах изверженных пород земной коры // Геохимия. – 1962. – № 7. – С. 555–572.

2. Гусев А.И., Гусев А.А. Тетрадный эффект фракционирования редкоземельных элементов и его использование в решении проблем петрологии гранитоидов // Успехи современного естествознания. – 2011. – № 5. – С. 45–49.

3. Гусев А.И. Магматизм и геолого-промышленные типы оруденения Колыванского рудного поля // Известия Бийского отделения русского географического общества, 2012. – Вып. 33. – С. 8–14.

4. Гусев А.И. Геохимия и петрология Чиндагатуйского массива юга Горного Алтая // Успехи современного естествознания. – 2014. – № 11. – Ч. 3. – С. 27–32.

5. Bau M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/ Ho, Zr/Hf, and lanthanide tetrad effect // Contrib. Miner. Petrol. 1996. – V. 123. – P. 323–333.

6. Harris N., Inger S., Massey J. The role of fluids in the formation of High Himalayan leucogranites. In: Treloar P J, Searle M, editors. Himalayan Tectonics. // Geological Society, London, Special Publications, 1993. – Vol. 74. – P. 391–400.

7. Henry D., Novak M., Hawthorne F.C., et al. .Nomenclature of the tourmaline-supergroup minerals // American Mineralogist, 2011. – V. 96. – P. 895–913.

8. Guillot S., Le Fort P. Geochemical constraints on the bimodal origin of High Himalayan leucogranites // Lithos, 1995. – V. 35. – P. 221–234.

9. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim Comochim Acta. 1999. – V. 63. – N_{2} 3/4. – P. 489–508.

10. Leeman W. P., Sisson V. B. Geochemistry of boron and its implications for crustal and mantle processes // Mineralogical Society of America, Reviews in Mineralogy., 2002. – Vol. 33. – P. 645–707.

11. Linares E., Pellitero E., Saavedra J. Primeras edades radiométricas en el área estanno-wolframífera de Morille–Martinamor (Centro-Oeste de España) // Boletín Geológico y Minero, 1987. – V. XCVIII. – P. 640–646.

12. London D., Wolf M., Morgan G. B. VI., Gallego-Garrido M. Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, España // Journal of Petrology, 1999. – V. 40. – P. 215–240.

13. Ramírez J. A. Estudio petrológico, geoquímico e isotópico del batolito de Jálama / Norte de Extremadura, 1996. – PhD thesis, Universidad de Granada. – P. 201.

14. Scaillet B., France-Lanord C., Le Fort P. Badrinath–Gangroti plutons (Garhwal, India): petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite // Journal of Volcanology and Geothermal Research, 1990. – V. 44. – P. 163–188.

15. Scaillet B., Pichavant M., Roux J. Experimental crystallization of leucogranite magmas // Journal of Petrology, 1995. – 36. – P. 663–705.

16. Visona D., Lombardo B. Two-mica and tourmaline leucogranites from the Everest–Makalu region (Nepal–Tibet). Himalayan leucogranite genesis by isobaric heating // Lithos, 2002. – V. 62. – P. 125–150.

17. Wasson J.T., Kallemeyn G.W. Composition of chondrites // Phil. Trans. R. Soc. Lond, 1988. - V. 201. - P. 535-544.

18. WatsonE.B., Harrison T.M. Zircon saturation revisited: Temperature and composition effects in variety of crustal magma types // Earth and Planetary Science Letters, 1983. – V. 64. – P. 295–304.