УДК 544.31: 546.57'23

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ АG₈GE_{1-x}SN_xSE₆

¹Алвердиев И.Дж., ²Машадиева Л.Ф., ²Имамалиева С.З., ¹Юсибов Ю.А.

¹Гянджинский Государственный Университет, Баку;

²Институт Катализа и Неорганической Химии НАНА, Баку, e-mail: _samira@mail.ru

Измерением ЭДС концентрационных относительно серебряного электрода цепей с твердым электролитом Ag₄RbI₅ в интервале температур 290-430К изучена система Ag₈GeSe₆-Ag₈SnSe₆. Подтверждено образование непрерывных рядов твердых растворов между обеими кристаллическими модификациями исходных соединений. Из данных измерений ЭДС вычислены парциальные молярные функции серебра в сплавах, а также термодинамические функции фазовых переходов исходных соединений и твердых растворов Ag₈Ge_{1-x}Sn_xSe₆.

Ключевые слова: система Ag₈GeSe₆-Ag₈SnSe₆, твердые растворы, метод ЭДС, твердый электролит Ag₄RbI₅, термодинамические свойства

THERMODYNAMIC PROPERTIES OF SOLID SOLUTIONS AG₈GE_{1-x}SN_xSE₆

¹Alverdiyev I.J., ²Mashadiyeva L.F., ²Imamaliyeva S.Z., ¹Yusibov Y.A.

¹Ganja State University, Baku;

²Institute of Catalysis and Inorganic Chemistry named after acad. M. Nagiyev of NASA, Baku, e-mail: samira@mail.ru

The system $Ag_8GeSe_6-Ag_8SnSe_6$ was studied by electromotive force (EMF) measurements of the concentration chains with Ag_4RbI_5 solid electrolyte within 290-430K temperature interval. The formation of a continuous series of solid solutions between the two crystal modifications of the starting compounds is confirmed. The partial molar thermodynamic functions of silver as well as the thermodynamic functions of the phase transitions of starting compounds and $Ag_8Ge_{1,x}Sn_xSe_6$ solid solutions were calculated based on the results of the EMF measurements

Keywords: Ag₈GeSe₆-Ag₈SnSe₆ system, solid solutions, EMF method, Ag₄RbI₅ solid electrolyte, thermodynamic properties

Сложные халькогениды серебра и фазы переменного состава на их основе являются ценными функциональными материалами, обладающими термоэлектрическими, фотоэлектрическими, оптическими и др. свойствами. Некоторые из них обладают высокой ионной проводимостью по катиону Ag⁺ и могут быть использованы в качестве электрохимических сенсоров, электродов или электролитных материалов в устройствах электрохимического превращения энергии [3, 5, 7].

Для разработки и оптимизации методов синтеза и выращивания монокристаллов многокомпонентных халькогенидов серебра необходимы надежные данные по фазовым равновесиям и термодинамическим свойствам соответствующих систем. В работах [4, 6, 8] нами представлены результаты комплексного исследования фазовых равновесий и термодинамических свойств некоторых систем, составленных из бинарных и тройных халькогенидов серебра, германия и олова. В [1] установлено, что система $Ag_8GeSe_6-Ag_8SnSe_6$ квазибинарна и имеет фазовую диаграмму с непрерывными рядами твердых растворов между обеими модификациями исходных соединений.

Данная работа посвящена изучению термодинамических свойств твердых растворов $Ag_8GeSe_6-Ag_8SnSe_6$ методом ЭДС с твердым электролитом Ag_4RbI_5 .

Исходные тройные соединения Ag₈GeSe₆ и Ag₈SnSe₆ плавятся конгруэнтно при 1176 и 1027 К и претерпевают полиморфные превращения при 321 и 355 К соответственно [3,10].

Низкотемпературная модификация Ag_8GeSe_6 имеет орторомбическую (пр.гр. $Pmn2_1$, Пр.гр. $Pmn2_1$, a = 0.7823, b = 0.7712, c = 1.0885нм) [3], а высокотемпературная – кубическую (Пр.гр.F-43m, a = 1.099 нм структуру) [10]. Обе кристаллические модификации соединения Ag_8SnSe_6 изоструктурны с Ag_8GeSe_6 имеют следующие параметры: a = 0.79168, b = 0.78219, c = 1.10453 nm [9] и a = 1.112 nm [10].

Материалы и методы исследования

Для проведения исследований были синтезированы тройные соединения Ag₈GeSe₆ и Ag₈SnSe₆. Синтез проводили сплавлением стехиометрических количеств соответствующих элементарных компонентов высокой степени чистоты в вакуумированных (~10⁻²Па) кварцевых ампулах по методике в [1]. Индивидуальность синтезированных соединений контролировали методами ДТА и РФА.

Сплавлением исходных соединений в различных соотношениях в вакуумированных кварцевых

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 7, 2016 ампулах синтезировали сплавы системы $Ag_8GeSe_6-Ag_8SnSe_6$, которые для гомогенизации отжигались при 900К в течение 500 ч. и охлаждались в режиме выключенной печи.

Исследования образцов проводили измерением ЭДС концентрационных цепей типа

(-) Ag (тв) / Ag₄RbI₅(тв) / (Ag в сплаве) (тв) (+) (1)

в которых электролитом служил твердый суперионный проводник Ag₄RbI₅, обладающий высокой ионной проводимостью уже при комнатной температуре [5]. Левым электродом служило металлическое серебро, а правыми электродами – равновесные сплавы исследуемой системы с различными составами.

ЭДС измеряли компенсационным методом с помощью цифрового вольтметра марки В7-34А в интервале температур 290÷430 К. Измерения сначала проводили в температурном интервале существования высокотемпературных твердых растворов, а затем – низкотемпературных [1]. Первые равновесные значения были получены после 25-30 ч. после выдерживания ячейки при 380К, последующие – через каждые 3 ч. после установления определенной температуры. Равновесными считали те значения ЭДС, которые при неоднократном измерении при данной температуре отличались друг от друга не более, чем на 0,5 мВ независимо от направления изменения температуры.

Методика составления электрохимических цепей и измерений ЭДС подробно описаны в [2, 7].

E, mV

Результаты исследования и их обсуждение

Результаты измерений ЭДС концентрационных цепей типа (1) представлены на рис. 1. Как видно, температурная зависимость ЭДС для каждого образца системы Ag₈GeSe₆-Ag₈SnSe₆ имеет вид двух прямых с точкой излома. Данные рис. 1 находятся в соответствии с результатами [1] об образовании непрерывных рядов твердых растворов между двумя модификациями исходных соединений, а температуры излома практически совпадают с температурами полиморфных переходов исходных соединений и твердых растворов.

Для проведения термодинамических расчетов результаты измерений ЭДС были обработаны в приближении их линейной температурной зависимости методом наименьших квадратов и представлены (табл. 1) в виде уравнений типа [2,7]:

$$E = a + bT \pm t \left[\frac{S_E^2}{n} + S_b^2 (T_i - \overline{T})^2\right]^{1/2}$$

(t – критерий Стюдента, S_E^2 и S_b^2 – дисперсии отдельных измерений ЭДС и коэффициента *b*, соответственно).

Рис. 1. Температурные зависимости ЭДС концентрационных цепей типа (1) для сплавов $Ag_{s}GeSe_{5}-Ag_{s}SnSe_{5}$: 1 – $Ag_{s}GeSe_{6}$: 2 – 20; 3 – 40; 4 – 60; 5 – 80 мол% $Ag_{s}SnSe_{5}$: 6 – $Ag_{s}SnSe_{6}$

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 7, 2016 Таблица 1

Температурные зависимости ЭДС концентрационных цепей типа (1) для сплавов системы Ag₈GeSe₆-Ag₈SnSe₆

Фаза	Т, К	E, $MB = a + bT \pm tS_{E}(T)$		
$(Ag_8GeSe_6)_1$	298-317	$237,7+0,092T\pm 2,2\left[\frac{0,06}{15}+4\cdot 10^{-5}(T-306,9)^2\right]^{1/2}$		
$(Ag_8GeSe_6)_{II}$	325-430	$218, 2+0, 153T \pm 2\left[\frac{0,18}{24} + 8, 1 \cdot 10^{-6}(T-371,4)^2\right]^{1/2}$		
$(Ag_8Ge_{0,8}Sn_{0,2}Se_6)_I$	290-325	$240, 4+0, 091T \pm 2, 2 \left[\frac{0,05}{16} + 3, 2 \cdot 10^{-5} (T-308,2)^2\right]^{1/2}$		
$(Ag_{8}Ge_{0,8}Sn_{0,2}Se_{6})_{II}$	330-430	$224,5+0,152T\pm 2\left[\frac{0,22}{26}+1,4\cdot 10^{-6}(T-376,6)^2\right]^{1/2}$		
$(Ag_8Ge_{0,6}Sn_{0,4}Se_6)_1$	290-330	$243,9+0,090T\pm 2,2\left[\frac{0,05}{16}+3,3\cdot 10^{-5}(T-312,1)^2\right]^{1/2}$		
$(Ag_{8}Ge_{0,6}Sn_{0,4}Se_{6})_{II}$	340-430	$227,7+0,150T \pm 2 \left[\frac{0,29}{24}+2,3\cdot 10^{-6}(T-379,2)^2\right]^{1/2}$		
$(Ag_8Ge_{0,4}Sn_{0,6}Se_6)_I$	290-335	$246, 1+0,092T \pm 2, 2 \left[\frac{0,07}{16} + 4,0.10^{-5}(T-317,5)^2\right]^{1/2}$		
$(Ag_{8}Ge_{0,4}Sn_{0,6}Se_{6})_{II}$	345-430	$230,6+0,150T \pm 2\left[\frac{0,35}{24}+4,3\cdot10^{-6}(T-384,3)^2\right]^{1/2}$		
$(Ag_8Ge_{0,2}Sn_{0,8}Se_6)_1$	290-340	$250,8+0,088T\pm 2,2\left[\frac{0,08}{16}+1,7\cdot 10^{-5}(T-328,4)^2\right]^{1/2}$		
$(Ag_{8}Ge_{0,2}Sn_{0,8}Se_{6})_{II}$	355-430	$232,4+0,146T \pm 2\left[\frac{0,21}{24}+1,4\cdot 10^{-6}(T-389,1)^2\right]^{1/2}$		
$(Ag_8SnSe_6)_1$	298-350	$253,5+0,089T\pm 2,2\left[\frac{0,08}{15}+1,5\cdot 10^{-5}(T-328,2)^2\right]^{1/2}$		
$(Ag_8SnSe_6)_{II}$	360-430	$233,6+0,145T \pm 2\left[\frac{0,28}{24}+2,2\cdot10^{-5}(T-394,3)^2\right]^{1/2}$		

Из данных табл. 1 по соотношениям [2]

$$\Delta \overline{G}_{Ag} = -zFE$$
$$\Delta \overline{H}_{Ag} = -z \left[E - T \left(\frac{\partial E}{\partial T} \right)_{P} \right] = -zFa$$
$$\Delta \overline{S}_{Ag} = zF \left(\frac{\partial E}{\partial T} \right)_{P} = zFb$$

рассчитали парциальные молярные термодинамические функции серебра в высокотемпературных твердых растворах при 400 К и низкотемпературных при 298К (табл. 2).

Кривые концентрационных зависимостей этих функций при соответствующих температурах (рис. 2) имеют вид, характерный для систем, образующих неограниченные твердые растворы замещения.

Полученные значение парциальных молярных функций серебра позволили вычислить термодинамические функции полиморфного превращения соединений Ag₈GeSe₆ и Ag₈SnSe₆, а также промежуточных твердых растворов.

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 7, 2016

Таблица 2

Относительные парциальные термодинамические функции серебра
в системе $Ag_8GeSe_6-Ag_8SnSe_6$

Фаза	Т, К	$-\overline{\Delta G}_{Ag}$	$-\Delta \overline{H}_{Ag}$	$\Delta \overline{S}_{Ag}$,
		кДж×мол⁻¹		Дж×мол ⁻¹ ×К ⁻¹
$(Ag_8GeSe_6)_I$	298	$25,582 \pm 0,014$	$22,93 \pm 0,38$	8,88 ± 1,23
$(Ag_8GeSe_6)_{II}$	400	$26,968 \pm 0,017$	$21,05 \pm 0,20$	$14,76 \pm 0,55$
$(Ag_8Ge_{0.8}Sn_{0.2}Se_6)_1$	298	25,812 ± 0,018	$23,20 \pm 0,37$	8,78 ± 1,20
$(Ag_8Ge_{0.8}Sn_{0.2}Se_6)_{II}$	400	27,528 ± 0,019	21,66 ± 0,10	$14,67 \pm 0,72$
$(Ag_8Ge_{0.6}Sn_{0.4}Se_6)_1$	298	26,121 ± 0,021	$23,53 \pm 0,38$	8,68 ± 1,22
$(Ag_8Ge_{0.6}Sn_{0.4}Se_6)_{II}$	400	$27,759 \pm 0,022$	21,97 ± 0,13	$14,47 \pm 0,93$
$(Ag_8Ge_{0,4}Sn_{0,6}Se_6)_{I}$	298	26,391 ± 0,030	$23,75 \pm 0,43$	8,88 ± 1,34
$(Ag_8Ge_{0,4}Sn_{0,6}Se_6)_{II}$	400	$28,039 \pm 0,023$	$22,25 \pm 0,17$	$14,47 \pm 1,27$
$(Ag_8Ge_{0,2}Sn_{0,8}Se_6)_1$	298	$26,729 \pm 0,030$	$24,20 \pm 0,27$	$8,49 \pm 0,75$
$(Ag_8Ge_{0.2}Sn_{0.8}Se_6)_{II}$	400	$28,058 \pm 0,018$	$22,42 \pm 0,11$	$14,09 \pm 0,72$
$(Ag_8SnSe_6)_I$	298	$25,582 \pm 0,014$	$22,93 \pm 0,38$	8,88 ± 1,23
$(Ag_8SnSe_6)_{II}$	400	$26,968 \pm 0,022$	21,05 ± 0,21	$14,76 \pm 0,55$

Рис. 2. Зависимости парциальных термодинамических функций серебра от состава в системе Ag₈GeSe₆-Ag₈SnSe₆ при 298K и 400K

Теплота полиморфного превращения соединений может быть вычислена как разность теплот образования его модификаций

$$\Delta H_{\rm II,II,i} = \Delta_f H^0(\beta) - \Delta_f H^0(\alpha), \qquad (2)$$

где $\Delta H_{n.n.}$ – теплота полиморфного превращения соединения, $\Delta_f H^0(\beta)$ и $\Delta_f H^0(\alpha)$ – теплоты образования двух модификаций. Согласно фазовой диаграмме [3], парциальные молярные функции серебра в Ag₈GeSe₆ относятся к потенциалобразующей реакции Ag (TB.) + 0,125GeSe₂(TB.) + 0,5Se(TB.) = = 0,125 Ag₈GeSe₆ (TB.)

из которой следует, что GeSe₂ вносит одинаковый вклад в функции $\Delta_f H^0(\beta)$ и $\Delta_f H^0(\alpha)$. Поэтому в соотношении (2) указанные интегральные термодинамические функции можно заменить соответствующими парциальными молярными функциями серебра

$$\Delta H_{\text{n.n.}} = 8[\Delta H_{Ag}(\beta) - \Delta H_{Ag}(\alpha)]. \quad (3)$$

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 7, 2016

Таблица 3

Термодинамические функции полиморфных превращений исходных соединений					
и твердых растворов системы Ag. GeSe - Ag. SnSe					

Фаза	Т _{п.п.} , К	<u>ΔH</u> _{п.п.,} кДж×мол ⁻¹	<u>ΔS</u> Дж×К ⁻¹ ×мол ⁻¹
Ag ₈ GeSe ₆	320	$15,0 \pm 4,6$	$47,0 \pm 14,5$
$Ag_8Ge_{0,8}Sn_{0,2}Se_6$	327	$12,3 \pm 3,8$	37,6 ± 11,6
$Ag_8Ge_{0,6}Sn_{0,4}Se_6$	334	$12,5 \pm 4,1$	37,4 ± 12,3
$Ag_8Ge_{0,4}Sn_{0,6}Se_6$	342	$12,0 \pm 4,8$	$35,1 \pm 14,0$
$Ag_8Ge_{0,2}Sn_{0,8}Se_6$	349	$14,2 \pm 3,0$	$40,7 \pm 8,6$
Ag ₈ SnSe ₆	355	$15,4 \pm 4,7$	43,3 ± 13,2

Это выражение более удобно для расчета $\Delta H_{n.n.}$, так как в него не входит погрешность теплоты образования GeSe₂. Энтропия полиморфного превращения вычислена по уравнению

$$\Delta S_{\rm n.n.} = \Delta H_{\rm n.n.} / T_{\rm n.n.}$$

Аналогичные расчеты проведены для Ag_8SnSe_6 и твердых растворов $Ag_8Ge_{1-x}Sn_xSe_6$ (табл. 3).

Относительно высокие погрешности полученных данных связаны с тем, что в методе ЭДС в отличие от свободной энергии Гиббса, энтальпия и энтропия рассчитываются косвенно из коэффициента температурной зависимости [2].

Заключение

Методом ЭДС с твердым Ag⁺ проводящим электролитом подтверждено образование непрерывных рядов твердых растворов Ag₈Ge_{1-x}Sn_xSe₆ между высокотемпературными кубическими и низкотемпературными орторомбическими модификациями тройных соединений Ag₈GeSe₆ и Ag₈SnSe₆ и определены температуры их полиморфных превращений. Из данных измерений ЭДС вычислены парциальные свободная энергия Гиббса, энтальпия и энтропия серебра в обеих модификациях этих соединений и твердых растворов, а также теплоты и энтропии их полиморфных переходов.

Работа выполнена при поддержке Фонда Науки при Государственной Нефтяной Компании Азербайджанской Республики (Грант по проекту «Получение и исследование новых функциональных материалов на основе многокомпонентных халькогенидов металлов для альтернативных источников энергии и электронной техники», 2014).

Список литературы

1. Алиева З.М., Багхери С.М., Алвердиев И.Дж, Юсибов Ю.А., Бабанлы М.Б. Фазовые равновесия в квазитройной системе $Ag_2Se-Ag_8GSe_6-Ag_8SnSe_6$ // Неорган.матер., 2014, т. 50, № 10, С. 1063–1068.

 Бабанлы М.Б., Юсибов Ю.А. Электрохимические методы в термодинамике неорганических систем. – Баку, ЭЛМ, 2011, 306 с.

3. Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. – Баку: БГУ, 1993. – 342 с.

4. Багхери С.М., Алвердиев И.Дж, Юсибов Ю.А., Бабанлы М.Б. Фазовые равновесия в системе Ag₈GeS₆-Ag₈GeSe₆ и некоторые свойства твердых растворов // Азерб. Хим.Ж., 2014. – № 3. – С. 15–21.

5. Иванов-Щиц А.К., Мурин И.В. Ионика твердого тела. т. 1, изд. С.-Петерб.ун-та: 2000, 616 с.

6. Aliyeva Z.M., Bagheri S.M., Aliev Z.S., Alverdiyev I.J., Yusibov Yu.A. Babanly M.B The phase equilibria in the Ag₂S-Ag₈GeS₆-Ag₈SnS₆ system // J. Alloys Compd., 2014, v. 611, P. 395–400.

7. Babanly M.B., Yusibov Y.A., Babanly N.B. The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary Copper and Silver Chalcogenides. / Electromotive force and measurement in several systems. Ed.S. Kara. Intechweb.Org, 2011, P. 57–78.

8. Bagheri S.M., Imamaliyeva S.Z., Mashadiyeva L.F., Babanly M.B. Phase equilibria in the Ag_8SnS_6 - Ag_8SnSe_6 system // Intern. J. Advanced Scientific and Technical Research), 2014, Issue 4, No 2, P. 291–296.

9. Gulay L.D., Olekseyuk I.D., Parasyuk O.V. Crystal structure of $\beta\text{-}Ag_8SnSe_6\,/\prime$ J.Alloys Compd., 2002, v. 339, P. 113–117.

10. Gorochov O. Les composés Ag_8MX_6 (M = Si, Ge, Sn et X = S, Se, Te)// Bull. Soc. Chim. Fr. (1968) 2263–2275.