УДК 548.4:539.12.04:535.343.2

КИНЕТИКА ИОННО-ДИФФУЗИОННЫХ ПРОЦЕССОВ РАСПАДА РАДИАЦИОННЫХ ДЕФЕКТОВ В ИОННЫХ КРИСТАЛЛАХ

Арапов Б., Орозбаева А.А., Арапов Т.Б.

Ошский государственный университет, Ош, e-mail: baish-arapov@yandex.ru

В данной работе рассмотрена ионно-диффузионный механизм распада радиационных дефектов в ионных кристаллах. Предложено кинетическое уравнение, характеризующие скорости взаимодействия рекомбинационных частиц и ее решения, объясняющие одностадийные и многостадийные процессы распада радиационных дефектов.

Ключевые слова: ионно-диффузионные процессы, подвижные дефекты, радиационные центры, отжиг радиационных дефектов, кинетическое уравнение

ION KINETICS OF DIFFUSION PROCESSES DECAY RADIATION DEFECTS IN IONIC CRYSTALS

Arapov B., Orozbaeva A.A., Arapov T.B.

Osh State University, Osh, e-mail: baish-arapov@yandex.ru

In this paper we consider the mechanism of ion diffusion decay of radiation defects in ionic crystals. A kinetic equation describes the rate of recombination of particles, interacts and solves it, explains one-step and multi-step processes of radiation-induced defects decay.

Keywords: ion-diffusion processes, mobile defects, radiation centers, annealing of radiation defects, the kinetic equation

На основе экспериментальных результатов установлено, что при термическом распада радиационно-наведенных дефектов в ионных кристаллах играют ионные процессы, приводящие к превращению наведенных дефектов в другие менее устойчивые образования.

В радиационно-ионных процессах подвижные ионные дефекты имеют конечную длину свободного пробега, поэтому для определения кинетики распада центров следует использовать диффузионную теорию рекомбинации. На основе этой теории рекомбинации получено кинетическое уравнение радиационно-ионных процессов отжига радиационно-наведенных дефектов в ионных кристаллах [1–3].

Закономерности взаимодействия подвижных ионных дефектов и центров окраски определяется концентрацией подвижных дефектов *n*, их диффузии Д

энергией активации ε , концентрацией центров окраски N и температурой T.

Выразив n через N

$$n = N + (n - N) = N + \Delta m = \Delta m \left(\frac{N}{\Delta m} + 1\right),$$

где
$$\Delta m = (n-N) = (n_0 - N_0)$$
 — разность концентрации подвижных ионных дефектов п и центров окраски N), получим дифференциальное уравнение:

$$-\frac{dN}{dT} = 4\pi r_0 \beta^{-1} \prod N \left(\frac{N}{\Delta m} + 1 \right) \Delta m,$$

характеризующей скорость взаимодействия рекомбинирующих частиц, где $\beta = \frac{dT}{dt} -$ скорость нагрева.

Решение этого уравнения будет иметь следующий вид:

$$N = N_0 \left[\left(1 + \frac{N}{\Delta m} \right) \exp(-4\pi r_0 \beta^{-1} \mathcal{A}_0 \Delta m \int \exp(\frac{\varepsilon}{kT}) dT \right] = -\frac{N_0}{\Delta m} \right]^{-1}.$$

Из этого уравнения были получены более простые случаи:

а) если $\Delta m = n - N = n_0 - N_0 \approx n$, (то есть, n >> N, $n_0 >> N_0$), тогда получим одностадийные кривые термического отжига дефектов по реакции 1-го порядка:

$$N = N_0 \exp \left[-4\pi r_0 \beta^{-1} \mathcal{A}_0 n_0 \int_{T_0}^{T} \exp \left(-\frac{\varepsilon}{kT} \right) dT \right].$$

б) если $\Delta m = n - N = n_0 - N_0 = 0$, (то есть, n=N, n_0 = N_0), тогда получим одностадийные кривые термического отжига дефектов, но по реакции II порядка:

$$N = N_0 \left[1 + 4\pi r_0 \beta^{-1} \mathcal{A}_0 n_0 \int_{T_0}^{T} \exp\left(-\varepsilon / kT\right) dT \right]^{-1};$$

в) если $\Delta m = n - N = n_0 - N_0 \langle 0 |$ (то есть, $n << N, n_0 << N_0 \rangle$

В этом случае процесс отжига после первой стадии приостанавливается, не доходя до конца, а общий процесс термического отжига дефектов будет многостадийным.

Обозначив

$$\Delta m = -\Delta N_{01}$$

где ΔN_{01} — концентрации центров данного типа, оставшиеся после первой стадии распада), получим решение кинетического уравнения в следующем виде:

$$N = N_0 \left(\frac{N_0}{\Delta N_{01}} - \left(\frac{N_0}{\Delta N_{01}} - 1 \right) \exp(-4\pi r_0 \beta^{-1} \Delta N_{01} \int_{T_0}^{T} \exp(-\epsilon / kT) dT) \right)^{-1}.$$

Из этого уравнения при $T \to \infty$ получаем:

$$\exp(-4\pi r_0 \beta^{-1} \Delta N_{01} \int_{T_0}^{T} \exp(-\frac{\varepsilon}{kT}) dT) \to 0$$

и в конце первой стадии имеем:

$$\frac{N}{N_0} = \frac{\Delta N_{01}}{N_0} = \text{const}.$$

То есть процесс термического отжига останавливается не доходя до конца.

Для дальнейшего распада центров окраски данного типа необходимо наличие подвижных дефектов другого типа.

Если концентрации подвижных дефектов второго типа n_{02} равна концентрации оставшихся центров данного типа

$$N_{02}(n_{02} = \Delta N_{01} = N_{02}),$$

то процесс динамического отжига на второй стадии доходит до конца по реакции II порядка.

Тогда для второй стадии термического отжига имеем:

$$N_{2} = N_{02} \left[1 + 4\pi r_{02} \mathcal{A}_{02} N_{02} \int_{T_{0}}^{T} \exp\left(-\frac{\varepsilon_{2}}{kT}\right) dT \right]^{-1}.$$

В этом случае

$$\frac{N}{N_0} = \frac{\Delta N_{01}}{N_0} = \text{const},$$

то есть процесс начинает действовать для оставшейся после первой стадии концентрации центров. Подставим вместо

$$\frac{N}{N_0} = \frac{\Delta N_{01}}{N_0}$$

оставшееся после первой стадии термического отжига его значение, тогда получим следующее:

$$\frac{\Delta N_{01}}{N_0} = \frac{N_{02}}{N_2} = \left[1 + 4\pi r_{02} \prod_{02} \beta^{-1} N_{01} \int_{r_0}^{T} \exp(-\varepsilon / kT) dT\right]^{-1}.$$

Это выражение определяет вторую стадию термического отжига и начинает действовать только на $\frac{\Delta N_{01}}{N_0}$.

Тогда двухстадийная кривая термического отжига, происходящая по кинетике II-го порядка имеет следующий вид:

$$\frac{N}{N_0} = \left(\frac{N_0}{\Delta N_{01}} - \left(\frac{N_0}{\Delta N_{01}} - 1\right) \exp(-4\pi r_{01}\beta^{-1} N_{01}\Delta \Pi_{01} \int_{T_0}^T \exp(-\varepsilon / kT) dT)\right)^{-1} \times \left(1 + 4\pi r_{02} \Pi_{02}\beta^{-1} N_{01} \int_{T_0}^T \exp(-\varepsilon / kT) dT\right)^{-1}.$$

Таким образом, исходя из различных соотношений между начальными конценрациями радиационно-наведенных центров и подвижных диффузионных дефектов можно объяснить одностадийных или двух- и более стадийных процессов распада радиационных центров. На основе этой гипотезы получены кинетическое уравнение и его решение для изотермического случая.

Список литературы

- 1. Арапов Б., Юнусов М., Арапов Т.Б. Особенности многостадийных процессов тушения свечения центров в ионных кристаллах // Доклады АН РУз. Ташкент, 2002, С. 17–18.
- 2. Арапов Б., Арапов Т.Б. Механизм и кинетика тушения свечения центров в ионных кристаллах. – Бишкек, Илим, 2007. – С.160.
- 3. Арапов Т.Б., Ташкулов К., Арапов Б., Фото- и термостимулированная люминесценция активаторных центров в NaCl-Ag // Международный журнал прикладных и фундаментальных исследований. М.: 2016. №4 (часть 5). С.891–893.