214

УДК 552.11:552.13

ГЕОХИМИЯ И ПЕТРОЛОГИЯ ВЫСОКО-МС ДИОРИТОИДОВ ЕЛАНДИНСКОГО МАССИВА САЛАИРА

Гусев А.И.

Алтайский государственный гуманитарно-педагогический университет им. В.М. Шукшина, Бийск, e-mail: anzerg@mail.ru

В статье приведены данные по геохимии пород и минералов и петрологии высоко-Mg диоритов Еландинского массива Салаира. С высоко-Mg диоритами ассоциируют монцодиориты. В диоритоидах присутствуют меланократовые включения базальтоидов. Диоритоиды характеризуются повышенными содержаниями Mg, Cr, Ni, Co, Sc. Главные породообразующие минералы высоко-Mg диоритов характеризуются реверсивной зональностью. Генерация высоко- Mg диоритов происходила в результате смешения базальтоидных и кислых расплавов в нижней коре. Источниками кислых расплавов были выплавки гранатовых амфиболитов нижней коры и гранат-содержащая мантия.

Ключевые слова: высоко-Mg диориты, монцодиориты, смешение расплавов, плавление гранатовых амфиболитов и гранат-содержащей мантии

GEOCHEMISTRY AND PETROLOGY OF HIGH-MG DIORITES ELANDINSKII MASSIF SALAIR

Gusev A.I.

The Shukshin Altai State Humane-Pedagogical University, Biisk, e-mail: anzerg@mail.ru

Data on geochemistry of rocks and minerals and petrology of high-Mg diorites of Elandinskii massif Salair. Monzodiorites associated with high-Mg diorites. Melanocratic includes of basalts present in dioritoids. The hugh-Mg diorites characterized by high contents of Mg, Cr, Co, Ni, Sc. The main rock-forming minerals of high-Mg diorites characterized by reversing zoning. Generation of high-Mg diorites happen in result of mixing basaltoid and acid melts in lower crust. Sources of acid melts were smeltings of garnet amphibolites of lower crust and garnet-content mantle.

Keywords: high-Mg diorites, monzodiorites, mixing of melts, melting of garnet amphibolites and garnet-content mantle

Высоко-Mg андезитоидные породы (такие как высоко-Мд адакиты и санукитоиды) относятся к загадочным породам, так как они имеют геохимические характеристики типичного частичного плавления, происходившего как в земной коре, также, как и в мантии. С одной стороны, они имеют высокие концентрации Mg, Cr, Ni и высокие значения Mg – коэффициента [Mg#, = 100Mg/(Mg + Fe)], основных показателей мантийного происхождения. С другой стороны, они показывают обогащение крупными литофильными ионными элементами (LILE), сильное деплетирование высоко-зарядными элементами (HFSE, например, Nb, Ta и Ti), а также высокие значений фракционирования редкоземельных элементов, каковые являются типичными для частичного плавления мафических коровых пород [10, 12]. Следовательно, в происхождении высоко-Мg андезитоидов и диоритоидов имеются признаки комплексного корово-мантийного взаимодействия. На юге Салаира имеются высоко-Мд диоритоиды Еландинского массива, обладающие также всеми перечисленными характеристиками. Цель исследования – на основе геохимических и петрологических признаков высокоМg диоритоидных пород Еландинского ареала выяснить их петрогенезис. Актуальность исследования определяется необходимостью выяснения генезиса этих необычных пород, с которыми связано оруденение меди, вольфрама и других металлов.

Результаты исследования и их обсуждение

Еландинский массив входит в состав Горновского ареала Жерновского комплекса Салаира пермо-триасового возраста. Еландинский массив прорывает и метаморфизует породы маслянинской толщи позднедевонско – раннекарбонового возраста, чебуринской свиты позднекембрийскораннеордовикского возраста и шалапского меланжевого комплекса, в том числе и серпентинитовой его составляющей. Все другие массивы Горновского ареала внедрены в тектонический аллохтон сложенный вулканогенно-осадочными породами чебуринской свиты позднекембрийско - раннеордовикского возраста. Контактовые изменения наиболее детально изучены на Яминском поисковом участке в экзоконтакте Еландинского массива. Здесь контактовому воздействию подвержены вулканоген-

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 8, 2016 но-осадочные породы мартыновской толщи и образования шалапского полимиктового меланжевого комплекса. Ширина полосы контактового воздействия до 1 км. Из гидротермальных изменений наиболее широко проявлено окварцевание в виде мелких зон с убогой сульфидной минерализацией и маломощных непротяженных жил, а также кварц-турмалиновых метасоматитов. Кроме того, турмалинизация широко проявлена в зоне ороговикования и за ее пределами, образуя ореол тонкой рассеянной минерализации шириной до 3^х- 5^и км.

Возраст лейкогранитов (206Pb/238U) составляет 250.3 ± 0.8 млн лет (возраст ²⁰⁷Pb/²⁰⁶Pb соответствует 243.8 ± 6.9 млн лет). $(^{206}\text{Pb}/^{238}\text{U})$ Среднее значение возраста $2\hat{4}9.8 \pm 1.6$ млн лет (СКВО = 1.2) трех проанализированных фракций согласуется с возрастом конкордантного циркона и является наиболее достоверной оценкой времени его кристаллизации и соответственно формирования лейкогранитов Еландинского массива. Массив сложен диоритами, высоко-Мg диоритами, кварцевыми диоритами, монцодиоритами, монцонитами, лейкогранитми.

В северной приконтактовой части массива отмечаются небольшие тела диоритов и диоритовых порфиритов серой, тёмно-серой окраски размерами в несколько десятков метров в поперечнике среди монцодиоритов. Характерной особенностью этих диоритов является наличие ксенокристаллов оливина размерами от 0,3 до 0,6 см в поперечнике и их высоко-Мд состав. Клинопироксены и роговые обманки этих пород относятся к сложным кристаллам и имеют прямую и обратную зональность. В составе этих пород присутствуют 2 клинопироксена. В матриксе пород присутствуют мелкие выделения кварца, нередко резорбированные. Среди диоритов присутствуют меланократовые включения базальтоидного состава размерами от 0,5 до 10 см в поперечнике.

Кварцевые монцониты и монцодиориты розовато-серые средне – крупно зернистые массивные. Структуры: гипидиоморфнозернистая с элементами пойкилитовой, монцонитовой. Отмечаются порфировидные разности. Размер зерен от 1 до 2,5 мм. Минеральный состав кварцевых монцонитов: калиевый полевой шпат 27-35%, плагиоклаз 45-60%, роговая обманка 0-15%, кварц 10%. Акцессорные минералы: апатит, сфен, рудный (магнетит) и редко циркон. Калиевый полевой шпат пелитизирован, наблюдается слабо выраженная пятнистая микропертитовая структура.

Минеральный состав монцодиоритов: калиевый полевой шпат – 27-35%, плагиоклаз – 37-42%, биотит – до 10%, роговая обманка – до 18%, в единичных шлифах моноклинный пироксен-диопсид до 20%, акцессорные (сфен, циркон, апатит, пирит) – 1%.

Химический состав пород Еландинского маасива приведен в табл. 1.

Mg# = (100 Mg)/(Mg+Fe). Значения РЗЭ нормированы по хондриту по [1]. Eu* = $(Sm_N + Gd_N)/2$. $TE_{1,3}$ – тетрадный эффект фракционирования редкоземельных элементов, как среднее между первой и третьей тетрадами по [7].

Приведенные данные характеризуются низкой титанистостью, разными соотношениями натрия и калия. В них отношение U/ Th повсеместно менее 1, что указывает на отсутствие наложенных процессов на породы. Повышенные отношения La/Yb_{N и} Sr/Y и концентрации Ba, Sr сближает их с шошонитовой серией, а низкие концентрации Y и Yb позволяют их относить к адакитовым гранитоидам. Для диоритов характерны повышенные концентрации MgO, Cr, Ni, Co, коэффициента Мд#, что свойственно высоко-Мд диоритам. Величины тетрадного эффекта фракционирования (ТЭФ) редкоземельных элементов (РЗЭ) не выходят за границы значимых величин, характерных для W- и М-типов.

Для решения некоторых петрологических задач изучены зональные кристаллы клинопироксена и оливина и незональной роговой обманки. Химические составы некоторых главных минералов высоко-Mg диоритов приведены в табл. 2.

Характерной особенностью минералов состоит в том, что в зональных кристаллах резко отличаются концентрации таких элементов как Cr, Ni, Co (табл. 2).

В соответствии с геобарометром (по содержанию Al- в роговой обманке) давление при кристаллизации высоко-Mg диоритов составляло ~ 9 кбар. Согласно двупироксеновому геотермометру (при условии равновесия с роговой обманкой) температура кристаллизации высоко-Mg диоритов оценивается в 900 °C [3].

Как показывают данные химического состава пород Еландинского массива высоко-Мg диориты показывают близость к шошонитовой серии и к адакитовым гранитоидам. В них низкие концентрации Y (менее 18 г/т), Yb (менее 3,8 г/т), высокие отношения Sr/Y (от 27,4 до 56,1), высокое значение Mg#, варьирующее от 0,64 до 0,79.

Соотношение (La/Yb)_N Yb_N показывает, что для пород Еландинского массива источниками плавления для генерации кислых расплавов были различные источники: для высоко-Mg диоритов – это были гранатовые амфиболиты нижней коры, а для монцодиоритов – гранат-содержащая мантия с содержанием граната 5 и 3% (рисунок).

Таблица 1

Представительные анализы высоко-Мg диоритов и монцодиоритов Еландинского массива

		Диор	ЭИТЫ		Монцодиориты			
№ проб	1	2	3	4	5	6	7	8
SiO ₂	53,5	54,9	55,1	53,4	56,4	58,40	58,5	58,3
TiO ₂	0,64	0,63	0,55	0,65	0,57	0,75	0,53	0,58
Al ₂ O ₃	13,3	14,46	14,93	13,2	17,41	17,8	17,24	17,59
Fe ₂ O ₂	8,2	8,3	8,96	8,4	8,1	5,98	6,3	6,27
MnO	0,12	0,13	0,17	0,12	0,06	0,11	0.08	0,05
MgO	9,5	7,4	7,1	10,1	2,63	2,44	2,05	2,1
CaO	6.4	6.7	7.0	6.6	5.55	3.85	5.31	3.92
Na.O	3.3	3.6	1.98	3.3	4.54	3.50	5.05	8.83
K.O	2.45	2.65	2.3	2.4	3.85	5.1.8	2.90	1.53
H.O	11	13	11	14	1 41	1 25	1 28	13
P 0	0.31	0.31	0.11	03	0.41	0.38	0.28	0.27
$r_2 \sigma_5$	115	320	235	530	2.5	2.6	15.8	14.3
Co	40.4	34.5	33	36.5	13.3	13.3	9.95	7 16
Ni	41.7	190	89	310	4.2	4.17	64.6	12.0
Cu	23,5	46	25	40	34	13,1	41,3	13.7
Sc	99,8	65,4	63,8	112,8	32	28	28,6	29,1
Cs	1,5	1,8	2,0	1,5	2,2	2,9	3,1	3,0
Rb	45,7	62,0	28,1	55,1	48,4	89	37,6	9,01
Sr	987	770	480	660	738	1021	755	551
Y	17,6	15,5	17,5	14,3	16,4	13,2	18,0	18,1
Zr	123	112	75,5	125	112	434	82	171
Nb	6,5	5,0	4,1	4,8	3,94	7,5	6,04	6,44
Ba	1027	1020	470	830	1254	1700	1812	231
La	28,1	26,2	12,61	24,6	33,1	57,90	33,2	28,8
Ce	58,2	51,0	25,3	49,2	60,8	100,80	65,4	60,3
Pr	7,6	6,4	3,11	6,2	7,7	13,2	7,71	7,0
Nd	31,2	25,0	13,2	22,6	30,8	48,90	30,7	28,4
Sm	6,1	5,11	2,7	4,4	6,2	11,30	5,51	5,19
Eu	1,95	1,5	0,8	1,4	2,1	3,15	1,95	1,66
Gd	5,4	4,0	2,9	3,8	4,87	7,67	4,91	4,59
Tb	0,72	0,58	0,52	0,52	0,687	1,12	0,631	0,619
Dy	3,9	2,9	3,2	2,8	3,36	5,1	3,52	3,49
Но	0,75	0,6	0,62	0,55	0,677	1,24	0,683	0,7
Er	2,1	1,6	1,85	1,41	1,74	2,9	2,10	2,06
Im	0,3	0,24	0,3	0,21	0,269	0,5	0,291	0,301
Yb	1,95	1,58	1,/5	1,35	1,6/	1,81	1,8/	2,01
	0,27	0,25	0,3	0,21	0,24	0,240	0,289	0,299
HI To	3,5	2,9	2,1	3,1	4,80	11,0	3,02	4,95
la Th	0,55	5.0	0,5	2.40	0,50	0,5	0,330	0,393
111 I T	1.7	3,0	1.01	0.01	0.84	2.4	0,006	0.984
Mo#	0.78	0.68	0.64	0.79	0.35	0.42	0.36	0.36
U/Th	0.74	0.68	0.29	0.37	0.27	03	0.1	0.32
Sr/Y	561	497	27.4	46.1	45.0	77 3	41 9	30.4
La/Yh	9.5	10.9	4.5	12.0	13.1	21.1	11.7	9.4
Eu/Eu*	1,03	0,99	0,88	1,03	1,14	0,37	0,97	0,79
∑РЗЭ	166,14	142,46	83,79	133,6	170,6	232,89	176,7	163,5

217 Таблица 2

Химический состав минералов высоко-Мg диоритов Еландинского массива

Компоненты	Оливин		Роговая обманка	Клинопироксен 2			
	1	2	3	4	5	6	
SiO ₂	38,1	36,85	40,2	52,04	54,15	52,71	
TiO ₂	0,06	0,17	1,44	0,41	0,11	0,36	
Al ₂ O ₂	0,05	0,03	13,97	2,42	1,44	2,01	
Cr.O.	0,03	0,01	Н/Ч	0,01	0,65	0,09	
FeO	28.9	35.1	16 35	8 11	43	8 14	
MnO	0.2	0.3	0.34	0.21	0.14	0.39	
MgO	33.5	27.9	9.97	14 21	16 79	14.83	
	1.0	11	11.32	23.12	23.53	21.81	
Na O	1,0	1,1	2.21	0.46	0.25	0.40	
Na ₂ O	0,03	0,03	2,31	0,40	0,33	0,49	
K ₂ U	0,01	0,01	1,03	H/4	H/4	H/4	
Li	2,88	8,38	11,8	8,62	9,61	8,33	
Be	3,29	0,2	0,67	0,21	0,06	0,12	
<u>Sc</u>	2,27	6/,6	38,21	10/	/2,5	81,9	
11 V	49,1	44,8	8256	2580	118/	1/45	
<u> </u>	01	33	303	250	105	1710	
Cr	315	996	45,1	4,05	2423	1/19	
	145,/	133,2	44,8	44,5	41,/	40,0	
	21.1	3909	27,1	10,5	00.7	120	
<u> </u>	21,1	38,8	41	20,5	99,7	20,5	
<u>R0</u>	H/4	H/4 200	3,92	H/4	H/4 74.6	H/4	
<u>Sr</u>	5/	08,8	232	95,8	/4,0	8/,8	
	0,03	0,21	22,3	10,8	4,21	6.81	
<u> </u>	0,51	0,22	2 02	10,2	3,0	0,01	
NU	1.25	0,12	2,92	0,012	0,027	0,02	
Da	1,23	0.68	203	2 10	0,08	1.15	
	5.17	2.13	20.8	8.65	2 7	4.66	
Pr	11	0.61	3 55	1 73	0.52	0.91	
Nd	635	3 11	20.4	1,75	3.04	5.6	
Sm	1 49	11	5 62	3.4	1.06	1.80	
Eu	0.85	0.45	2 2	1.06	0.38	0.60	
Gd	1 46	0.7	5 67	3 35	1 20	1.83	
Th	0.32	0.2	0.78	0.44	0.15	0.26	
Dv	2.08	1.1	4.83	2.62	0.91	1.51	
Ho	0.28	0.1	0.95	0.45	0.17	0.28	
Er	0,85	0,4	2,5	1,15	0,41	0.76	
Tm	0,13	0,04	0,33	0,14	0,06	0,09	
Yb	0,7	0,25	2,14	0,84	0,34	0,54	
Lu	0,1	0,04	0,31	0,11	0,05	0,08	
Hf	0,55	0,12	1,66	0,78	0,16	0,35	
W	0,13	0,16	0,11	0,61	4,44	0,11	
Th	0,02	0,03	0,04	0,02	0,01	0,02	
U	0,01	0,01	0,01	0,01	Н/Н	0,01	
Mg#	0,78	0,64	0,61	75,9	87,9	76,8	
Nb/La	0,009	0,17	0,59	0,006	0,041	0,017	
La/Yb	1,8	2,44	2,13	2,5	1,94	2,13	
Sr/Y	948	334	10,3	8,9	17,6	12,9	
Dy/Yb	2,97	3,96	2,25	3,12	2,67	2,79	
TE _{1'3}	1,31	1,52	1,06	1,06	1,04	1,05	

Примечание. Оливин: 1 – ядро. 2 – краевая часть; 3 – роговая обманка; клинопироксен: 4 – ядро, 5 – промежуточная часть, 6 – периферия.

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 8, 2016

Диаграмма (La/Yb)_N – (Yb)_N по [2] для пород Еландинского массива. Тренды плавления различных источников: І- кварцевые эклогиты; II – гранатовые амфиболиты; III – амфиболиты; IV – гранатсодержащая мантия, с содержанием граната 10%; V – гранатсодержащая мантия, с содержанием граната 5%; VI – гранатсодержащая мантия, с содержанием граната 3%; BM – верхняя мантия; BK – верхняя кора. 1 – Высоко-Мд диориты, 2 – монцодиориты

Увеличение Sc, Y и других элементов от ядра к периферии объясняется диффузионно-связанной трансформацией мантийного оливина в магматической камере, согласно экспериментальным данным [9]. Резорбция мантийных расплавов и ксенокристаллов оливина в кварц-содержащем высоко-магнезиальном диорите указывает на важное петрологическое свидетельство для генерации высоко-Mg диоритов региона через ассимиляцию мантийных ультрабазитов фельзическим расплавом. Это фиксируется в кристаллах с реверсивной зональностью, когда в промежуточной зоне таких кристаллов увеличение Mg# сопровождается резким возрастанием Cr и Ni. При указанной ассимиляции не происходило фракционирование граната, о чём свидетельствуют значения Dy/Yb, варьирующие от 2,25 до 3,96 согласно [8]. Все указанные признаки свидетельствуют о том, что клинопироксен -1 с реверсивной зональностью кристаллизовался не в мантийных условиях, а в пределах нижней коры (где давление не превышало 10 кбар).

Существуют 4 генетические модели на происхождение высоко-Mg адакито-подобных диоритов и андезитов: 1 – частичное плавление субдуцируемой океанической коры с последующим взаимодействием с перекрывающим мантийным клином [11]; 2 – частичное плавление деламинированной и эклогитизированной нижней коры и последующим взаимодействием с перекрывающими мантийными перидотитами [6]; 3 - частичное плавление обогащённого мантийного метасоматизированного перидотита слэб-производными адакитовыми расплавами [5]; 4 – смешением мафической и кремний-обогащённой магмой [4]. Мы склоняемся к 4 модели- смешению базальтоидной и кислой магм. Об этом свидетельствуют многочисленные ксенолиты базальтоидного состава среди диоритов и выше приведенные минералого-геохимические данные.

Выводы

1. Высоко-Мg диориты Еландинского массива характеризуются значительной меланократововостью. В них присутствует оливин, орто- и клинопироксены 2 генераций. Среди высоко-Мg диоритов присутствуют базальтоидные включения, указывающие на смешение магм разного состава по кремнекислотности.

2. Химизм высоко-Мg диоритов соответствует модели смешения разных магм: в них отмечается высокое значение Mg# коэффициента, высокие концентрации Cr, Ni, Co, Sc. В то же время в них присутствует кварц в количестве до 10%.

3. Источниками кислых расплавов были разные субстраты. Высоко-Мg диориты формировались за счёт плавления гранатового амфиболита, а монцодиориты – за счёт плавления гранат-содержащей мантии с содержанием граната 5 и 3%.

Список литературы

1. Anders E., Greevesse N. Abundences of the elements: meteoric and solar // Geochim. Cosmochim. Acta. – 1989. – V. 53. – P. 197-214.

2. Barbarin B. Granitoids: main petrogenetic classifications in relation to origin and tectonic setting // Geol. Journ. -1990. - V. 25. - P. 227-238.

3. Blundy J.D., Holland J.B. Calcic amphibole equilibrium and a new amphibole–plagioclase geothermometer // Contributions to Mineralogy and Petrology, 1990. – V. 104. – P. 208-224.

4. Chen B., Jahn B.-M., Suzuki K. Petrological and Nd– Sr–Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implication // Geology, 2013. – V. 41. – P. 91–94.

5. Gao Y.F., Hou Z.Q., Kamber B.S., Wei R.H., Meng X.J., Zhao R. Adakite-like porphyries from the southern Tibetan continental collision zones: evidence for slab melt metasomatism // Contributions to Mineralogy and Petrology, 2007. – V.153. – P. 105–120.

6. Huang F., Li S., Dong F., He Y., Chen F. (2008). High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust // Chemical Geology, 2008. – V. 255. – P. 1–13.

7. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim Cosmochim Acta. – 1999. – V.63. – $N_{\rm 2}$ 3/4. – P. 489-508.

 $8.\ Macpherson C.G.\ Lithosphere erosion and crustal growth in subduction zones: Insights from initiation of the nascent East Philippine Arc // Geology, 2008. – V.36. – P. 311-314.$

9. Qian Q., O'Neill H., Hermann J. Comparative diffusion coefficients of major and trace elements in olivine at ~ 950 °C from a xenocryst included in dioritic magma // Geology, 2010. – V. 38. – P. 331-334.

10. Rapp R.P., Shimizu N., Norman M.D., Applegate G.S. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa // Chemcial Geology, 1999. – V. 160. – P. 335-356.

11. Rapp R.P., Norman M.D., Laporte D., Yaxley G.M., Martin H., Foley S.F. Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt–rock reaction experiments at 3–4 GPa and petrogenesis of Archean Mg-diorites (sanukitoids) // Journal of Petrology, 2010. – V. 51. – P. 1237–1266.

12. Smithies R.H, Champion D.C. The Archaean high-Mg diorite suite: links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth // Journal of Petrology, 2000. – V. 41. P. 1653-1671.

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 8, 2016