УДК 546.812: 662.24

ФИЗИКО-ХИМИЧЕСКОЕ И ФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ ТВЕРДЫХ РАСТВОРОВ (SNSE)_{1.x}(GDSE)_x

¹Алиев И.И., ²Мургузова М.С., ²Таиров Б.А., ³Исмаилов Ш.С.

¹Институт Катализа и Неорганической химии имени М.Ф. Нагиева НАН Азербайджана, e-mail: aliyevimir@rambler.ru;

²Институт Физики НАН Азербайджана; ³Институт Радиационных Проблем НАН Азербайджана

Методами физико-химического анализа дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализа, а также измерением микротвердости и плотности изучен характер взаимодействия в системе (SnSe)_{1-x}(GdSe)_x. Исследовано, что твердые растворы на основе SnSe при комнатной температуре доходят до 3 мол. % GdSe. Расчет параметров элементарных решеток для образцов 0,5; 1, 1,5 и 2 мол. % GdSe показал, что при введении GdSe в SnSe происходит замещение атомов олова на гадолиний, и параметры элементарной решетки возрастают, т.е. полученые твердые растворы обладают слабодеформированной орторомбической структурой. Изучено влияние селенида гадолиния на электрофизические и тепловые свойства твердых растворов (SnSe)_{1-x}(GdSe)_x. Установлено, что в зависимости от содержания GdSe происходит инверсия с изменением знака проводимости р-типа на n.

Ключевые слова: ликвидус, солидус, эвтектика, конгруэнтное, твердые растворы

PHYSICO-CHEMICAL AND PHYSICAL INVESTIGATIONS OF THE $(SNSE)_{1,X}$ $(GDSE)_X$ SOLID SOLUTIONS

¹Aliev I.I., ²Murguzova M.S., ²Tairov B.A., ³Ismailov Sh.S.

¹Institute of Catalysis and Inorganic Chemistry named after M.F. Nagieva of National Academy of Sciences of Azerbaijan, e-mail: aliyevimir@rambler.ru;

²Institute of Physics, National Academy of Sciences of Azerbaijan;

³Institute of Radiation Problems National Academy of Sciences of Azerbaijan

Interaction in the system (SnSe)_{1,x}(GdSe)_x were studied by the methods of physicochemical analysis, differential thermal analysis (DTA), X-ray diffraction technique (XRD), microstructure (MSA) analysis and measurement of micro-hardness and density. It is found that the solid solutions based on SnSe at room temperature reach up to 3 mol. % GdSe. Calculation of the parameters of elementary lattices for samples 0.5; 1, 1.5, and 2 mol% of GdSe showed that when GdSe is introduced into SnSe, the tin atoms are replaced by gadolinium, and the parameters of the elementary lattice increase, i.e. the obtained solid solutions have a weakly deformed orthorhombic structure. The effect of gadolinium selenide on the electrical and thermal properties of solid solutions (SnSe)_{1-x} (GdSe)_x was studied. It is found that depending on the content GdSe inversion occurs with changing sign p-conductivity type n.

Keywords: liquidus, solidus, evtectic, congruently, solid solutions

Известно, что полупроводниковые твердые растворы на основе A^{iv}B^{vi} подробно исследованы и нашли применение при создании различных преобразователей энергии [4, 6, 7]. В последнее десятилетие интенсивно изучаются твердые растворы на основе соединений A^{IV}B^{VI} с участием редкоземельных металлов (РЗМ) [2, 5, 8]. Интерес к этим материалам в основном вызван тем, что, с одной стороны, SnSe является термоэлектрическим материалом с вакансиями в подрешетках, взаимодействие которых приводит к образованию антиструктурных дефектов. С другой стороны, гадолиний, являющийся РЗМ, имеет своеобразную электронную структуру и сильно влияет на физические параметры.

C этой точки зрения, физико-химическое исследование твердых растворов $(SnSe)_{1-x}(GdSe)_x$ имеет научное и практическое значение.

Целью настоящей работы является изучение характера химического взаимодействия в системе $(SnSe)_{1-x}(GdSe)_x$, а также определение областей твердых растворов. Изучение некоторых физических свойств в зависимости от состава.

Соединение SnSe плавится конгруэнтно при 880 °C [3] и кристаллизуется в орторомбической сингонии с параметрами элементарной ячейки: $a=4,153; b=4,440; c=11,498 \text{ Å}; Z=4, пр. гр. <math>D_{2h}^{16}-Pcmn, \rho=6,18 \text{ г/см}^3$ [1,10].

Материалы и методы исследования

При синтезе сплавов системы $(SnSe)_{1,x}(GdSe)_x$ использовали исходные материалы: олово металлическое марки Sn-000, годолиний 99,998 и Se марки B-4. Тройные сплавы синтезировали непосредственным сплавлением компонентов SnSe и $GdSe)_x$ ампульным методом в интервале температур $900-1150\,^{\circ}C$ с последующим медленным охлаждением при режиме

выключенной печи. Монокристаллы выращивались методом Бриджмена. Гомогенизирующий отжиг полученных однофазных образцов проводился в среде спектрально чистого аргона при 600 °C в течение 150 ч.

Исследование сплавов твердых растворов $(SnSe)_{1-x}(GdSe)_x$ проводили методами физико-химического анализа: дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА), а также определением плотности и измерением микротвердости.

ДТА образцов осуществляли на низкочастотном терморегистраторе «Termoskan -2» со скоростью нагревания 9 град/мин. Дифрактограммы снимали на установке D2 PHASER (Си К_а-излучение). Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузках, выбранных в результате изучения микротвердости для каждой фазы от нагрузки. Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузках, выбранных в результате изучения микротвердости каждой фазы. Микроструктуру сплавов изучали на микроскопе МИМ-8. Для травления шлифов сплавов, использовали раствор состава 10 мл $\hat{H}NO$, конц. + H₂O₂ = 1:2 – время травления составляло 20-25 сек. Плотность определяли пикнометрическим методом, в качестве рабочей жидкости использовали толуол. Термо-э.д.с. и теплопроводность были измерены стационарным методом [9]. Коэффициент Холла измерялся при постоянном токе и в постоянном магнитном поле. При анализе данных по коэффициенту Холла и расчету концентрации учитывались смешанный характер проводимости и Холл-фактор. Погрешность измерения термо-э.д.с. и теплопроводности составляла менее 4%, а коэффициента Холла ~ 2,7%.

Результаты исследования и их обсуждение

Синтез сплавов системы (SnSe) $_{1-x}$ (GdSe) проводился в интервале температур 900-1000°С. Сплавы системы (SnSe) $_{1-x}$ (GdSe) $_x$ получаются в компактном виде серебристосерого цвета. Сплавы устойчивы по отношению к воздуху и воде. Концентрированные минеральные кислоты (HNO $_3$, H_2SO_4) и щелочи разлагают их.

Синтезированные сплавы системы (SnSe)_{1-x}(GdSe)_x исследованы методами физико-химического анализа. Результаты ДТА показали, что все фиксированные термические эффекты на кривых нагревания и охлаждения—обратимые. На термограммах сплавов системы обнаружены по два эндотермических эффекта, соответствующих ликвидусу и солидусу системы. Микроструктуры сплавов системы (SnSe)_{1-x}(GdSe)_x изучали после отжига. Установлено, что растворимость компонентов в твердом состоянии на основе SnSe составляет 3 мол. % GdSe.

Для сплавов твердых растворов, содержащих 0,5; 1, 1,5 и 2 мол. % GdSe, изучены электрофизические и тепловые свойства в зависимости от содержания GdSe. Полученные результаты приведены на рис. 1, 2.

Как видно из рис. 1, значения коэффициента термо-э.д.с. (α) и коэффициента Холла (R_{*}) с ростом содержания GdSe возрастают й при 0,5 мол. % GdSe термоэ.д.с. и коэффициент Холла меняют знак от р-типа проводимости на п, при 0,8 мол. % GdSe значения α и R_x по абсолютной величине проходят через максимум $(\alpha \sim -475 \text{ mkB/K и R}_{\star} = 182 \text{ см}^3/\text{Кл})$, который соответствует значению концентрации носителей π - 10^{16} см⁻³, что на два порядка меньше, концентрации дырок в исходном SnSe (p = $6.4-10^{18}$ см⁻³). Такое уменьшение концентрации носителей тока в исследуемых образцах дает нам основание предполагать, что при переходе от SnSe к твердым растворам (SnSe)_{1-х}(GdSe)_х происходит частичная компенсация носителей заряда.

На рис. 2 представлены зависимости теплопроводности χ и подвижности μ носителей тока от содержания GdSe в исследуемых образцах при $T=300~\rm K$. Как видно из рис. 2, значения, χ и μ с увеличением содержания GdSe до x<0,5 плавно уменьшаются; далее с увеличением содержания GdSe наблюдается заметное увеличение теплопроводности и подвижности. Отметим, что в области инверсии знака R_x на температурной зависимости $\mu(T)$ наблюдается резкий минимум.

Расчет параметров элементарных решеток для образцов 0,5; 1, 1,5 и 2 мол. % GdSe показал, что при введении GdSe в SnSe происходит замещение атомов олова на гадолиний и параметры элементарной решетки возрастают, т.е. полученные твердые растворы обладают слабодеформированной орторомбической структурой, причем образование твердого раствора (SnSe), (GdSe) происходит при гетеровалентном замещении и компенсации валентности. Отметим, что изменение теплопроводности в кристаллической решетке осуществляется в результате изменения зарядового состояния, т.е. под действием сильной поляризации ионами Gd^{3+} в структуре SnSe, Sn^{2+} (0,74 Å а в GdSe, Gd $^{3+}$ 1,07 \hat{A}). При этом замещение носит групповой характер, т.е. два иона Gd⁺³ замещают ионы Sn^{2+} и Sn^{4+} [4].

Из рис. 2 видно, что теплопроводность образцов с ростом содержания GdSe заметно уменьшается $\chi=18,7\cdot10^{-3}$ Вт/см·К (в чистом SnSe) до $\chi=6,9\cdot10^{-3}$ Вт/см·К (при x=1,0) а затем возрастает до $15,9\cdot10^{-3}$ при $\chi=1,0$. Такое изменение теплопроводности свидетельствует о том, что с одной стороны, при замещении атомов олова атомами гадолиния происходит частичная рекомбинация носителей заряда и одновременно появляются дополнительные рассеивающие центры.

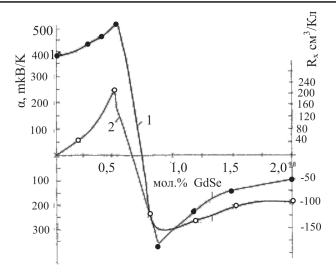


Рис. 1. Значения коэффициента термо-э.д.с. α (1) и коэффициента Холла R (2) сплавов твердых растворов (SnSe) , с ростом содержания GdSe (30 $\mathring{0}$ K)

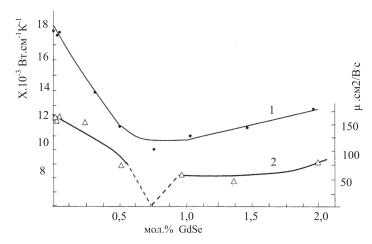


Рис. 2. Значения теплопроводности χ (1) и подвижности μ (2) носителей тока сплавов твердых растворов (SnSe) $_{lx}$ (GdSe) $_{r}$ с ростом содержания GdSe

При малых содержаниях 0,25 мол. % GdSe происходят интенсивные рассеяния носителей заряда от фононов, что приводит к уменьшению общей теплопроводности и проводимости носителей. С увеличением содержания GdSe теплопроводность уменьшается и частично возрастает подвижность носителей заряда. Выявлено, что исследованные образцы являются частично компенсированными полупроводниками со смещенным типом проводимости.

Список литературы

- 1. Boudjouk P., Seidler D., Grier D. et al. Crystal Data SnSe // Chem. Mater. 1996. V. 8. P. 1189–1193.
- 2. Гусейнов Д.И., Мургузов М.И., Исмаилов Ш.С. Особенности самокомпенсации в твердых растворах $\mathrm{Er_x Sn_{_{1x}} Se}$ // ФТП. − 2013. т. 47. № 3. С. 298–301.
- 3. Гасков А.М., Зломанов В.П., Сапожников Ю.А. и др. Изучение диаграмм состояния системы «олово-селен» // Вестн. МГУ Сер. 2, Химия. 1968. N2 3. С. 48–52.

- 4. Гуршумов А.П. Физико-химическая и физическая природа полупроводниковых материалов на основе моноселенида олова. Азерб. РП СНИО СССР. Баку, 1991. 182 с.
- 5. Гусейнов Д.И., Мургузов М.И., Исмаилов Ш.С. Теплопроводность твердых растворов $\mathrm{Er_xSn_{1-x}Se}$ // Неорганические материалы. 2008. т. 44. № 4. С. $\overline{1}$ –3.
- 6. Дмитриев А.В, Звягин И.П. Современные тенденции развития физики термоэлектрических материалов // УФН. -2010. т. 180. № 8. С. 821–837.
- 7. Коленко Е.А. Термоэлектрические охлаждающие приборы. М.: Наука, 1967. 258 с.
- 8. Мургузова М.С., Мургузов М.И., Исмаилов III.С., Гусейнов Дж.И., Таиров Б.А. Рентгенографическое исследование и изучение зависимости от состава физических параметров систем $(SnSe)_{1-x}(Gd_2Se_3)_x$ (0.0 < x < 2.0) твердых растворов // Физика Азербайджан. 2006. т. 12. С. 6–8.
- 9. Охотин А.С., Пушкарский А.С., Боровикова Р.П., Симонов В.А. Методы измерения характеристик термоэлектрических материалов и преобразователей. М.: Наука, 1974. 167 с.
- 10. Физико-химические свойства полупроводниковых веществ: Справочник. М: Наука, 1979. –339 с.