УДК 539.193

РАСЧЁТ И ИНТЕРПРЕТАЦИЯ КОЛЕБАТЕЛЬНЫХ СПЕКТРОВ НЕЗАРЯЖЕННЫХ КОНФОРМЕРОВ МЕТИОНИНА И N-ФОРМИЛМЕТИОНИНА В АНГАРМОНИЧЕСКОМ ПРИБЛИЖЕНИИ

¹Тен Г.Н., ²Щербакова Н.Е., ³Баранов В.И.

¹Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, Саратов, e-mail: TenGN@yandex.ru; ²Российский научно-исследовательский противочумный институт «Микроб», Саратов; ³Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва

В приближении гибридного функционала плотности B3LYP/6-311++G(d,p) выполнен расчёт энергий и колебательных спектров наиболее стабильных незаряженных конформеров метионина и N-формилметионина. Учёт механического ангармонизма приводит к существенному улучшению согласия между экспериментальными и вычисленными частотами в области валентных колебаний связей CH, NH и OH: значения вычисленных частот уменьшились на 3.54.5% для валентных колебаний связей CH, NH и oH: значения вычисленных частот уменьшились на 3.54.5% для валентных колебаний связей CH, NH и a 5,4% для q(OH). Выполненный расчёт позволил уточнить отнесение экспериментально наблюдаемого колебания для метионина с частотой 1442 см-1, форма которого отвечает изменению валентного угла CCH. Для N-формилметионина разница энергий для конформеров II и III от I составляет 0,3 и 15,5 кДж/моль, что указывает на равную вероятность одновременного сюществования конформеров I и II в веществе. Определено влияние фрагмента NCO незаряженного конформера I для N-формилметионных колебаний (CH2), (NH) для N-формилметионных колебаний (OH) и Q(CO) с формами валентных колебаний (CH2), (NH) для N-формилметионина приводит к значительному возрастанию (в 10 раз) интенсивности соответствующих полос поглощения по сравнению с Met.

Ключевые слова: метионин, N-формилметионин, конформеры, колебательные спектры, газовая фаза, расчёт, интерпретация, ангармоническое приближение

THE CALCULATION AND INTERPRETATION OF VIBRATIONAL SPECTRA OF THE UNCHARGED CONFORMERS OF METHIONINE AND N-FORMYLMETHIONINE IN THE ANHARMONIC APPROXIMATION

¹Ten G.N., ²Scherbakova N.E., ³Baranov V.I.

¹N.G. Chernyshevsky Saratov State University, Saratov, e-mail: TenGN@yandex.ru; ²Russian Research Anti-Plague Institute «Microbe», Saratov;

³V.I. Vernadsky Institute of geochemistry and analytical chemistry of the Russian Academy of Sciences, Moskow

In the approximation of the hybrid density functional B3LYP/6-311++G(d,p) calculated have been energies and vibrational spectra of the most stable uncharged conformers of methionine and N-formylmethionine. Accounting for mechanical anharmonicity leads to a significant improvement in the agreement between the experimental and calculated frequencies in the region of stretching vibrations of CH bonds, NH and HE values: the calculated frequencies have decreased by 3.54.5% for the stretching vibrations of CH and NH bonds, and by 5.4% for q(HE). The calculation clarified the assignment of the experimentally observed oscillations to methionine with the frequency of the 1442 cm-1, the form of which corresponds to the change of the valence angle SSN. For N-formylmethionine the difference of the energies for conformers I and II from I is 0.3 and 15.5 kJ/mol, which indicates the probability of the simultaneous existence of conformers I and II in the substance. Established has been the impact of the NCO fragment of the uncharged conformer I to N-formylmethionine on the shift in the frequency and intensity of absorption bands. It is shown that a mixture of forms of deformation vibrations of (OH) and Q(CO) with forms of stretching vibrations of (CH2), (NH) for N-formylmethionine leads to a significant increase (10 times) in the intensity of the corresponding absorption bands compared to the Met.

Keywords: methionine, N-formylmethionine, conformers, vibrational spectra and gas phase, calculation, interpretation, anharmonic approximation

Несмотря на достаточно существенный (более 70 лет) срок исследования колебательных спектров аминокислот, в настоящее время в литературе наблюдается интенсивное обсуждение детальной интерпретации аминокислот. Это связано не только с развитием и усовершенствованием экспериментальных методов регистрации ИК, и особенно КР, спектров, но и возросшими возможностями молекулярного моделирования и теоретического расчёта колебательных спектров.

Экспериментальное измерение спектров аминокислот в газовой фазе затруднено тем, что при нагревании молекулы аминокислот могут распадаться на фрагменты,

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 8, 2017 такие как NH₂ и CO, что требует создания специальных экспериментальных условий для регистрации колебательных спектров [7]. В настоящее время экспериментальные ИК спектры для газовой фазы методом Фурье-спектроскопии измерены для валина, лейцина, изолейцина, пролина, фенилаланина, глицина, аланина, треонина, цистеина и метионина (Met) [7, 8]. Для нестандартных аминокислот, к которым относится N-fMet, такие спектры в литературе отсутствуют.

Ранее колебательный спектр незаряженного конформера Меt был вычислен в гармоническом приближении [9, 6]. При этом сравнение вычисленных частот было выполнено только для ИК спектров и для 35 колебаний, причём отнесение проводилось на основе сравнения с экспериментальным спектром кристаллического Met, имеющего в твёрдом состоянии цвиттер-ионную форму, что делает выполненное отнесение некорректным.

Цель данной работы – уточнить интерпретацию колебательных спектров наиболее стабильного незаряженного конформера Met на основе сравнения экспериментального спектра, измеренного для газовой фазы, и результатов квантово-химического расчёта колебательных спектров, выполненных в гармоническом и ангармоническом приближениях, а также провести интерпретацию колебательных спектров нестандартной аминокислоты N-fMet.

Оптимизация геометрии и расчёт колебательных спектров проводился по программе Gaussian-09 [5] с использованием метода DFT в приближении B3LYP и базисного набора 6-311++g(d,p).

Результаты исследования и их обсуждение

Метионин. Как показали более ранние расчёты, для большинства аминокислот, имеющих множество различных конформеров, наименьшей энергией обладают три конформера, отличающихся углами поворота фрагментов СООН относительно аминной группы NH₂ [3]. Разница энергий $\Delta E = E_{II,III} - E_I$ для конформеров Met II и III по сравнению с энергией конформера Met I, обладающего, как показал расчёт, наименьшей энергией среди конформеров I-III, составляет 175,1 и 141,8 кДж/моль соответственно, что показывает целесообразность сравнения экспериментального спектра только с теоретическим спектром конформера I, молекулярная структура которого с обозначением атомов приведена на рис. 1.

Вычисленные геометрические параметры – длины связей и углы – рассматриваемых конформеров Met совпадают с данными, приведенными в работах [9, 6, 1] и поэтому в данной статье они не приводятся.

Результаты расчёта нормальных колебаний, выполненные в гармоническом и ангармоническом приближении, а также экспериментальные значения частот и относительных интенсивностей ИК спектра Меt, измеренного для газовой фазы [7], приведены на рис. 2 (а, б) и в таблице.

Рис. 1. Молекулярные структуры конформеров Met I, II, III (вверху) и N-fMet I, II, III (внизу)

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 8, 2017

		Met							N-f	Met	
	>	م ه	$I_{ m MK}$	$I_{ m KP}$	Отнесение	$\mathcal{N}_{\underline{0}}$	۲ ⁻	v a	$I_{ m MK}$	$I_{ m KP}$	Отнесение
	231	212	17,8	3,5	γ(CSC)	11	240	235	0,3	6,8	$\gamma(CSC)$
	254	262	12,6	1,9	$\gamma(CSC), \gamma(CCO)$						
	294	286	25,3	0,6	(NH,)	12	297	293	1,1	1,2	y(CCC), y(CNC)
	335	326	0,3	2,8	$\gamma(C_1C_1\tilde{C}_1)$	13	354	351	13,1	0,5	
	382	384	12,4	0,8	$\gamma(CCS), \gamma(CCC),$	14	383	378	6,7	0,3	$\gamma(CCC), \gamma(CNC), \gamma(CCO),$
					γ (NCC), γ (CCO) [15	457	448	7,4	0,7	y(CSC)
	517	511	19,1	0,6							
						16	610	609	11,7	0,4	B(NH), B(OH)
	625	582	113,8	1,6	β(OH)	17	620	611	145,5	0,6	
	643	636	9,1	0,6	γ(CCN)	18	646	630	63,8	2,4	
						19	662	652	81,1	2,9	
	704	690	0,9	15,4	Q(SC)	20	706	692	6,5	19,6	Q(SC)
	748	730	8,5	6,9	Q(SC)	21	755	736	11,5	6,6	Q(SC)
	755	742	14,1	3,4	$\beta(CH_2)$	22	764	752	3,2	1,1	$\beta(CH_2)$
	796	776	33,7	6,3	Q(CC), B(CH,)	23	802	785	17	5,5	Q(CC), B(CH,)
	818	800	29,5	3,1	4						a
	879	802	128,6	2,8	Q(CN)	24	860	843	0,2	4,3	β(CH,)
	968	946	5,1	3,5	Q(CC), B(CH ₃)	25	973	961	2,0	2,2	$\beta(CH_3)$
	974	953	11,2	3,2		26	975	959	6,5	2,4	
	1005	984	1,9	6,5	$\beta(CH_3), \beta(CH_2)$	27	1017	766	2,6	3,7	$Q(CC), \beta(CH_2)$
	1024	966	7,7	5,8	$Q(CC), \beta(CH_2)$	28	1032	1016	1,9	1,5	β(CH)
	1058	1032	2,4	2,2	Q(CC)	29	1048	1018	1,3	11,8	Q(CC)
	1110	1079	46,4	3,3	Q(CN)	30	1057	1032	2,5	2,8	Q(CC)
(1136	1104	225,5	1,5	Q(CO)	31	1129	1097	134,6	0,8	Q(CN), Q(CO)
	1149	1117	6,6	2,2	$\beta(CH_2)$	32	1139	1111	81,8	2,1	$Q(CO), \beta(CH_2)$
	1007	1206	160	Li C		22	1101	1110	2 23	0	

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 8, 2017

36

PHYSICAL AND MATHEMATICAL SCIENCES

Окончание таблицы		Отнесение	Отнесение $\beta(CH_2), \beta(NH), \beta(OH)$			β(CH ₂), β(OH)		ß(CH ₃)	Q(CC), B(CH ₃), B(CH ₂)	$\beta(CH_2), \beta(C_2H), \beta(NH), \beta(OH)$	β(CH)	ß(CH ₃)	$\beta(CH_3), \beta(CH_2)$	B(CH ₁), B(CH ₁)	B(CH,), B(NH)	β(NH), β(CH,)	1	Q(CO)	Q(CO)	q(CH)	$\theta(CH_{i})$	q(CH ₃)	q(CH ₂)	q(CH ₂)	q(CH ₂), q(CH)	$q(CH_2), q(CH)$	q(CH ₃)	q(CH ₃)		q(NH)	q(OH)
	Met	$I_{ m KP}$	9,6	5,9	4,5	2,7	4,9	2,2	7,3	1,4	9,4	12,1	0,9	21,6	0,9	7,5		31,8	9,2	79,3	195,4	122,4	45,6	105,4	24,2	9,8	68,5	105,7		63,2	154,7
	Π-f	$I_{ m MK}$	139,2	105,9	27,4	5,3	5,9	5,7	14,5	29,4	8,9	9,7	10,7	1,8	11,9	23,9		685,1	289,3	73,7	21,5	32,6	14,1	3,2	5,6	24,1	8,7	6,3		38,8	74,5
		م ه	1231	1249	1242	1271	1299	1331	1333	1349	1416	1436	1450	1460	1467	1457		1749	1785	2760	2885	2941	2882	2914	2934	2944	2954	2979		3423	3540
		<mark>ہ</mark> د	1251	1274	1285	1307	1333	1360	1372	1386	1425	1468	1481	1486	1496	1502		1780	1819	2933	3029	3034	3043	3068	3080	3096	3110	3130		3579	3739
		Ne	34	35	36	37	38	39	40	41	42	43	4	45	46	47		48	49	50	51	52	53	54	55	56	57	58		59	60
		Отнесение		β(CH ₃), β(OH)	a			$\beta(CH_3)$	B(CH,), B(CH,), B(NH,), B(OH)	$\beta(CH_2)$	β(CH)	$\beta(CH_3)$	$\beta(CH_3), \beta(CH_2)$	$\beta(CH_3), \beta(CH_2)$	$\beta(CH_2)$		β(NH,)		Q(CO)		$q(CH_2)$	q(CH ₃)	$q(CH_2)$	$q(CH_2)$	q(CH ₂), q(CH)	$q(CH_2), q(CH)$	q(CH ₃)	q(CH ₃)	$q(NH_2)$	$q(NH_2)$	q(OH)
		$I_{ m KP}$		3,7	4,8	5,8		1,1	6,7	3,4	3,5	12,2	0,8	19,9	1,8		2,6		3,2		261,9	75,3	27,4	77,3	73,3	13,9	68,3	101,4	131,1	68,6	155,9
		$I_{ m MK}$		7,4	0,7	6,9		4,8	14,1	3,4	5,9	9,4	11,6	0,9	7,1		31,2		295,0		15,9	34,7	18,2	13,8	2,7	28,6	7,8	7,6	2,02	5,5	58,8
	Met	۲ a		1254	1251	1286		1325	1334	1341	1387	1425	1438	1461	1486		1655		1776		2884	2929	2894	2924	2917	2941	2954	2981	3369	3404	3538
		>_		1280	1288	1315		1359	1368	1376	1418	1468	1482	1486	1498		1669		1807		3029	3032	3038	3067	3072	3095	3107	3128	3496	3573	3740
		${ m V}_{_3}^{*}(I_{_{ m OIH}})$							1369(0.27)				1442(0.19)				1630(0.21)		1777(1.0)		2860(0.1)	2930(0.31)	2860(0.1)	2930(0.31)							3572(0.34)
		$\mathcal{N}_{\bar{0}}$		31	32	33		34	35	36	37	38	39	40	41		42		43		4	45	46	47	48	49	50	51	52	53	54

• ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

37

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 8, 2017

Рис. 2. Экспериментальный [7] ИК спектр Met (а), измеренный в газовой фазе, и вычисленные ИК спектры Met (б) и N-fMet (в)

Учёт механического ангармонизма приводит к существенному улучшению согласия между экспериментальными и вычисленными частотами в области валентных колебаний связей СН, NH и OH (область 2880-3540 см⁻ ¹). Значения вычисленных частот уменьшились на 3,5÷4,5% для валентных колебаний связей СН, NH и на 5,4 % для q(OH). Учитывая, что экспериментальные значения частот 2860 и 2930 см-1 отвечают максимумам полос поглощения, являющихся суперпозицией нескольких полос поглощения [7], расчёт нормальных колебаний в ангармоническом приближении позволил уточнить отнесение колебаний в этой области. Так, колебания 44 и 46, значения частот которых расположены в области 2884–2890 см⁻¹, отвечают экспериментальной полосе поглощения с максимумом в области 2860 см⁻¹, а колебания 45, 47-50 - полосе поглощения с максимумом в области 2930 см⁻¹. В области 700–1800 см⁻¹, в которой проявляются валентные колебания связей СС, СN, СS, СО и деформационные колебания аминной NH,, метильной CH,, а также СН₂, СН и ОН групп, значения частот понижаются на 1,5-2,5% по сравнению с частотами, вычисленными в гармоническом приближении. Исключение составляет колебание с частотой 879 см⁻¹, форма которого отвечает изменению длины связи CN. Выполненный расчёт позволил уточнить отнесение экспериментально наблюдаемого колебания с частотой 1442 см⁻¹, ранее интерпретированного как колебание 38 [1], к колебанию 39.

В низкочастотной области (ниже 200 см⁻¹), где проявляются колебания, характеризующие поворот или вращение одних молекулярных фрагментов Met относительно других как целого, учёт ангармонизма не привёл к какому-либо существенному изменению частот (в таблице частоты данного спектрального интервала не приведены). В области 200-520 см⁻¹ проявляются деформационные колебания углов ССС, CNC, СОС, CSC, среди которых низкочастотными являются колебания углов CSC. Наибольшую интенсивность в ИК спектре Met имеют полосы поглощения, отвечающие валентным колебаниям 21 и 27 связей CN (802 и 1079 см⁻¹), валентным колебаниям 28 и 43 связей СО (1104 и 1776 см⁻¹) и деформационному колебанию 14 β (OH) (582 см⁻¹). В спектрах КР в средней спектральной области имеются три линии сильной интенсивности – это колебания с частотами 690, 1438 и 1461 см-1, формы которых отвечают соответственно изменению длины связи SC и изменению валентных углов в группах СН₃ и СН₂. Наиболее интенсивные линии в спектрах КР лежат в области валентных колебаний связей СН, NH и ОН.

N-формилметионин. Первоначально, так же как и для Met, были определены

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 8, 2017 энергетические состояния трёх конформеров N-fMet (рис. 1) В отличие от Met разница энергий составляет $\Delta E = E_{II} - E_{I} = 0,3$ и $E = E_{III} - E_{I} = 15,5$ кДж/моль. Небольшое отличие вычисленных энергий конформеров II и III от I указывает на равную вероятность одновременного существования этих молекулярных структур в веществе.

В работе [4] была исследована стабильность 12 конформеров N-fMet, образующихся как за счёт относительного вращения групп СООН и NCO, так поворотов молекулярных фрагментов СООН и NCO относительно связей СС и СЅ. Учитывалось влияние на колебательные спектры всевозможных водородных связей, таких как О... НО, О...НN, О...НС и N...НС. Как и в нашем расчёте, наиболее стабильным оказался конформер I (рис. 1).

Для анализа влияния структуры на колебательные спектры, были предварительно проведены расчёты ИК и КР спектров для всех трёх конформеров N-fMet. Значения частот соответствующих спектров отличались незначительно и главным образом для низкочастотных колебаний, поэтому в таблице приведены колебания только для конформера І.

Ранее теоретические колебательные (ИК) спектры незаряженного N-fMet были представлены в работе [4], где был выполнен анализ лишь высокочастотной спектральной области (2900-3600 см⁻¹) и в качестве экспериментальных частот были взяты частоты колебаний Met. Как и в работе [2], расчёт частот был выполнен в гармоническом приближении. В таблице и на рис. 2 (в) приведены результаты расчёта колебательных спектров N-fMet и дана интерпретация нормальных колебаний. Влияние ангармонизма имеет такой же характер, как и в случае Met. В высокочастотной области 2750-3550 см-1 в отличие от Met вместо двух колебаний $q(NH_2)$ проявляются колебания с частотами 3423 и 2760 см⁻¹, характеризующие валентные колебания q(NH) и q(CH) фрагмента NCO.

Для N-fMet число нормальных колебаний на шесть больше, чем для Met, четыре из которых имеют мало смешанные формы колебаний. Это колебание в области 1749 см⁻¹, форма которого отвечает изменению длины связи С=О, и три колебания в низкочастотной области, которые характеризуют смещения молекулярного фрагмента NCO относительно других фрагментов N-fMet.

Два других колебания характеризуют валентные и деформационные колебания связей NH и OH, но их форма является смешанной с формами других колебаний, что влияет и на смещение частот колебаний по сравнению с частотами колебаний Met, и на интенсивность соответствующих полос поглощения. Так, смешение форм деформационных колебаний β(OH) с формами валентных колебаний $\beta(CH_2)$, $\beta(NH)$ (колебания 34, 35), как и смешение формы колебания Q(CO) с формой колебания $\beta(CH_2)$ (колебания 32, 33) приводит к значительному возрастанию (в ~10 раз) интенсивности соответствующих полос поглощения по сравнению с Met. По той же причине наблюдается значительное увеличение интенсивности полос поглощения, соответствующих колебаниям 18 и 19. В спектрах КР, как и для Met, наиболее интенсивные линии лежат в области валентных колебаний связей CH, NH и OH (колебания 50–60).

Выводы

Расчёт нормальных колебаний с учётом механического ангармонизма улучшил согласие вычисленных и экспериментальных частот колебательных спектров Met и N-fMet для наиболее стабильных незаряженных конформеров, что позволило уточнить ранее выполненную интерпретацию колебательных спектров. Выполнена полная интерпретация N-fMet и проведён сравнительный анализ с колебательным спектром Met. Определено влияние фрагмента NCO незаряженного конформера N-fMet на смещение частот и интенсивности полос поглощения. Показано, что смешение форм деформационных колебаний $\beta(OH)$ и $\overline{Q(CO)}$ с формами валентных колебаний $\beta(CH_2)$, $\beta(NH)$ для N-fMet приводит к значительному возрастанию (в ~ 10 раз) интенсивности соответствующих полос поглощения по сравнению с Met.

Список литературы

1. Кадров Д.М., Алексеев И.Г., Тен Г.Н. Расчёт и интерпретация колебательного спектра изолированного метионина // Вопросы прикладной физики. – 2011. – Вып. 18. – С. 48–51.

2. Кадров Д.М., Алексеев И.Г., Тен Г.Н. Расчёт и интерпретация колебательного спектра изолированного N-формилметионина // Вопросы прикладной физики. 2012. – Вып. 19. – С. 49–53.

3. Тен Г.Н., Кадров Д.М., Березин В.И. Стабильность и структура конформеров глицина, аланина и лейцина в изолированном состоянии и цвиттер-ионной форме // Вопросы прикладной физики. - 2010. - Вып. 17. - С. 42-44.

4. Das G., Mandal S. Ab initio-and density-functional studies of conformational behaviour of N-formylmethionine in gaseous phase // Chemical Papers. – 2014. – V. 68, № 11. – P. 1608-1620.

Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian
 OS - Gaussian Inc., Wallingford CT. 2009. – 394 p.
 Gunasekaran S., Bright A., Devi TSR., Arunbalaji R.,
 Anand G. Experimental and Semi-empirical computations of the

8. Linder R., Nispel M., Häber T., Kleinermanns K. Gasphase. FT-IR-spectra of natural amino acids // Chem. Phys. Lett. – 2005. – V. 409. – P. 260–264.

9. Naganathappa M., Chaudhari A. Spectroscopic characterization of cysteine and methionine using density functional theory method // Astrophysics and Space Science. -2015. – V. 357. – P. 2.