УДК 544.543:544.2

СИНТЕЗ И ИССЛЕДОВАНИЕ МЕТАЛЛОПОЛИМЕРНЫХ КОМПЛЕКСОВ НА ОСНОВЕ ПЛАНАРНЫХ ОЛИГОФЕНОЛОВ С ШИФФОВЫМИ ЗАМЕСТИТЕЛЯМИ

Бекташи Н.Р.

Институт полимерных материалов национальной АН Азербайджана, Сумгаит, e-mail: ipoma@science.az

На основе ди-, три- и олиготолилазометинфенолов и ацетатов переходных металлов (Zn^{+2} , Co^{+2} , Cu^{+2} и Pb^{+2}) синтезирован ряд полимерных комплексов. Физико-химическими и спектральными методами анализа определены их состав и структура. Показано, что испытанные планарные ди-, три- и олигофенолы с Шиффовыми заместителями при нормальных условиях активно взаимодействуют с ацетатами двухвалентных цинка, кобальта, меди и свинца и образуют интенсивно окрашенные металлополимерные комплексы, состоящие из растворимых (17,7–100%) и нерастворимых (22,9–70,6%) фракций с M_w и M_n колеблющимися в пределах 690–910 и 1690–2850 соответственно. Показано, что кроме медного комплекса ди- и тритолилазометинфенола ($T_{nz}=183\,^{\circ}$ C) полученные комплексы не плавятся вплоть до 250 °C. Комплексы Co^{+2} и Cu^{+2} с олиготолилазометинфенолом характеризуются магнитной восприимчивостью в пределах 1,3–3,8. Выявлена антибиотическая активность полученных комплексов, ингибирующая рост ряда микрокультур. Наиболее высокая ингибирующая активность установлена у комплекса меди с олиготолилазометинфенолом.

Ключевые слова: металлополимерные комплексы, Шиффовые заместители, молекулярномассовое распределение, эксклюзионная жидкостная хроматография, антибиотическая активность

SYNTHESIS AND INVESTIGATION OF METAL-POLYMER COMPLEXES BASED ON PLANAR OLIGOPHENOLS WITH SCHIFF SUBSTITUENTS

Bektashi N.R.

Institute of Polymer Materials of Azerbaijan National Academy of Sciences, Sumgait, e-mail: ipoma@science.az

On the basis of di-, tri- and oligotolylazomethinephenols and acetates of transition metals $(Zn^{+2}, Co^{+2}, Cu^{+2})$ a number of polymer complexes has been synthesized. Their composition and structure have been determined by physical-chemical and spectral methods of analysis. It has been shown that the tested planar di-, tri- and oligophenols with Schiff substituents in the normal conditions interact actively with acetates of bivalent zinc, cobalt, copper and lead and form the intensively colored metal-polymer complexes consisting of soluble (17,7-100%) and insoluble (22,9-70,6%) fractions with M_w and M_n vibrating within the ranges of 690-910 and 1690-2850 respectively. It has been shown that besides copper complex of di- and tritolylazomethinephenol (B.p. = 183 °C) the prepared complexes are not melted up to 250 °C. The complexes Co^{+2} and Cu^{+2} with oligotolylazomethinephenol are characterized by magnetic sensitivity within the ranges of 1,3-3,8. The antibiotic activity of the prepared complexes inhibiting the growth of a number of microcultures. The highest inhibitory activity has been established in copper complex with oligotolylazomethinephenol.

Keywords: metal-polymer complexes, Schiff substituents, molecular weight distribution, Size-Exclusion Liquid Chromatography, antibiotic activity

Рациональный дизайн лигандных систем, направленный на создание металлокомплексов с заданным строением и практически полезными свойствами, является важнейшей задачей современной координационной химии. Одним из наиболее широко изучаемых объектов, использующихся для решения этой задачи, являются азометиновые лиганды и их комплексные соединения. Известно, что при варьировании звенности металлоциклов, природы донорных атомов, разнообразных стерео- и координационно-активных заместителей удается синтезировать азометиновые комплексные соединения с управляемыми структурами и ядерностью. Путем изменения методов и условий синтеза, подбора лигандных систем и комплексообразователей получают не только обычные для хелатирующих лигандов внутрикомплексные

соединения, но и металлополимерные комплексы (МПК) [1, 2].

Цель исследования: создание новых типов структурно упорядоченных, конформационно регулируемых каталитических систем на основе МПК, состоящих из планарных ди-, три- и олиготолилазометинфенолов (ОТАМФ) и ряда переходных металлов: Zn²+, Cu²+, Co²+, Pb²+. Эти исследования могут открыть возможность создания новых типов комплексных катализаторов химических превращений, антибиотиков, а также полифункциональных материалов с высокими эксплуатационными свойствами.

Материалы и методы исследования

В процессе синтеза исследуемых МПК использовались реактивы: п-толуидин, салициловый альдегид, КОН, 35%-ный NaOCI, 37%-ный HCl, ацетаты цинка,

кобальта, меди и свинца, н-гептан, тетрагидрофуран (ТГФ), диметилформамид (ДМФА), этил- и метиловые спирты, 1,4-диоксан, концентрированная $\rm H_2SO_4$ производимыми фирмами «Merck», «Carbo-Erba» и Analar Chem». п-Толил-2-азометинфенол (ТАМФ) (или N-ртолилсалицилальдимин) синтезировали путем конденсации п-толуидина с салициловым альдегидом в среде кипящего этилового спирта. После завершения реакции растворитель отгоняли, а продукт конденсации перекристаллизовывали из этанола ($\rm T_{m}$ 93 °C).

Структуру ОТАМФ состоящей из ТАМФ звеньев можно описать в следующем виде:

$$\begin{array}{c}
OH \\
-CH=N-
\end{array}
-CH_3$$

Синтез ОТАМФ и МПК на их основе осуществляли по [3-5]. При этом ОТАМФ получен путем окислительной поликонденсации (ОП) ТАМФ 35%-ным водным раствором NaOCI в водно-щелочной среде разделили на три фракции: первая фракция, растворимая в н-гептане (ОТАМФ-1), вторая фракция, не растворимая в н-гептане (ОТАМФ-2), и третья фракция, растворимая в воде (ОТАМФ-3). Установлено, что ОФАМФ-1 состоит из смеси ди- $(M_{\odot} = 425)$ и тримеров ($M_{\parallel} = 640$) примерно в одинаковом количестве, а ОФАМФ-2 и ОФАМФ-3 являются олигомерами. Химическими и спектральными методами анализа установлено, что все три фракции ОТАМФ состоят из ТАМФ звеньев. Однако вследствие частичного гидролиза и окисления азометиновых групп в процессе синтеза в макромолекулу ОТАМФ-3, наряду с основными звеньями включаются в небольших количествах карбоксильные звенья (5-10%).

Молекулярные массы (ММ) и параметры молекулярно-массового распределения (ММР) синтезированных продуктов были определены методом эксклюзионной жидкостной хроматографии (ЭЖХ) на высокоэффективном жидкостном хроматографе фирмы Коvo (Чехия) с рефрактометрическим и УФспектрофотометрическим детекторами. Использованы две колонки размером 3.3×150 мм, заполненные неподвижной фазой Separon-SGX с размером частиц 7 мкм и пористостью 100 Å. Элюент — ДМФА, скорость потока 0.3 мл/мин. $T=20-25\,^{\circ}\mathrm{C}$. Калибровочную зависимость lgM от V_R в диапазоне $M=(1.5-100)\times10^2$ получили с использованием полиэтиленгликолевых стандартов и узких фракций ОТАМФ. Интерпретацию хроматограмм выполняли по методике [6].

ИК- и УФ-спектры полученных МПК и исходных ОТАМФ снимали в таблетках КВг, а также в растворах тетрагидрофурана (ТГФ) на спектрометре FTIR-8300 фирмы Shimadzu. Магнитные моменты комплексов измеряли методом Гуи с использованием $Hg[CO(SCN)_4]$ в качестве стандартного вещества при комнатной температуре.

ДТ и ТГ анализы тонких порошков полученных веществ осуществляли на приборе HiGtH RG2/s на воздухе при скорости роста температуры 2 °C/мин.

Антимикробную активность исследуемых комплексов определяли методом серийных разведений [7]. В качестве тест-штаммов использовали следующие стандартные типовые культуры микро-

организмов: L. monocytogenes, B. brevis, B. megaterium, M. luteus, B. cereus, K. pneumonia, M. smegmatis, S. thermophilus, S. aureus, E. aerogenes, Torulopsis holmii. P. Vulgaris. При этом определены минимальные подавляющие концентрации и минимальные бактерицидные концентрации катионов металлов в составе МПК. Одномолярные растворы $2[TAM\Phi]Cu^{+2}$, $2[OTAM\Phi-2]Cu^{+2}$, $2[OTAM\Phi-3]Cu^{+2}$, $2[OTAM\Phi-2]$ Co⁺², $2[OTAM\Phi-2]$ Zn⁺² и $2[OTAM\Phi-2]$ Pb⁺² стерилизовали автоклавированием.

Результаты исследования и их обсуждение

При смешивании ТГФ или диоксановых растворов ОТАМФ с метанольными растворами ацетатов Zn⁺², Co⁺², Cu⁺² и Pb⁺² наблюдается изменение окраски с образованием осадка. ОТАМФ-1 (ди-, тримерная фракция) с металлами так и исходный ТАМФ образует только растворимый комплекс (табл. 1, образцы 1 и 2), в то время как остальные МПК ОТАМФ состоят из растворимых и нерастворимых фракций (табл. 1, образцы 3-7). Как следует из данных табл. 1, образование МПК фракциями исследуемых олигомеров (ОТАМФ-1, ОТАМФ-2 и ОТАМФ-3) происходит с высоким выходом (74,4-95,5%). Видно также, образование МПК с ионами меди происходит с более высокими выходами, чем исходный мономер ТАМФ. Этот факт свидетельствует о большой реакционной способности ОТАМФ, обусловленной их системами полисопряженных связей.

В реакции взаимодействия с ОТАМФ-2 среди изучаемых металлов, Си+2 проявляет наиболее высокую активность. При этом выход комплексов ОТАМФ-2 снижается в ряду металлов: Cu^{+2} (95,5%), Pb^{+2} (74,4%), Co⁺² (71,2%), Zn⁺² (67,4) (табл. 1). В этом ряду наиболее активность проявляют $\hat{C}u^{+2}$ и Pb^{+2} и образующиеся МПК на их основе обладают высоким выходом и соответственно высокой нерастворимой фракцией (50,2; 47,9%). Наиболее высокий выход нерастворимой фракции МПК фиксирован в реакции взаимодействия ацетата меди с ОТАМФ-3 (70,6%), что, возможно, связано с наличием в структуре указанного МПК, кроме ОН и азометиновых групп (CH=N) активных СООН групп, вследствие чего образуются более плотная трехмерно-сетчатая структура. Исследование магнитных свойств нерастворимых фракций МПК показало, что Zn^{+2} и Pb^{+2} , как и следовало ожидать, диамагнитны (табл. 1, образцы 6 и 7). Величины магнитных моментов медных комплексов ТАМФ, ОТАМФ-2 и ОТАМФ-3 близки между собой (1,3-1,7). Лишь комплекс Co^{+2} с ОТАМФ-2 обладает высокой магнитной восприимчивостью (3,8) по сравнению с комплексами других металлов.

Гравиметрические анализы позволили определять содержание оксидов металлов в составе комплексов ТАМФ (12,49%) близко теоретически рассчитанному (13,08%). Растворимые и нерастворимые фракции комплексов Cu^{+2} и Zn^{+2} с $OTAM\Phi$ -2 включают в состав металлы, содержание которых близко к теоретически рассчитанным значениям (табл. 1). А в составе комплекса Сu⁺² с ОТАМФ-3 содержание металла в растворимой фракции примерно наполовину меньше (6,33%). Наибольшее отличие между рассчитанным и найденным содержанием металла в составе МПК наблюдается в случае Рb⁺² с ОТАМФ-2. Растворимая способность МПК, очевидно, обусловлена главным образом содержанием поперечных металло-полимерных межмолекулярных связей. В составе комплекса ОТАМФ-3 найденное содержание меди на 3,88% превышает рассчитанное количества. Это, возможно, связано с наличием в макромолекулах определенного количества бифункциональных салицилокислотных звеньев. Полученные МПК являются в основном коричневыми, черными, иногда темно-зелеными твердыми веществами. Кроме медного комплекса исходного ТАМФ и ОТАМФ-1 (203 и 195°С) остальные МПК плавятся вплоть до 250°С. Таким образом, температура плавления образующихся МПК намного (на 100–110°С) превосходит аналогичные параметры исходных органических веществ.

В ММ характеристике МПК, установленной методом ЭЖХ, обнаруживается тенденция понижения значений M_w в ряду Cu^{+2} , Co^{+2} и Zn^{+2} (2347, 1974 и 1690) (табл. 2).

Таблица 1 Свойства и выходы МПК ОТАМФ с ацетатами металлов

№	Комплексы	T _{nn} , °C	μэфф	Me,%			Выход,%		
п/п				TB	Найдено*		$\Phi_{_{1}}$	Φ_{2}	Σ
					$\Phi_{_1}$	Φ_{2}	-	_	
1	2[ТАМФ]Cu ⁺²	203	1,7	13,08	12,49	_	80,6	_	80,6
2	2[ОТАМФ-1]Cu ⁺²	>195	1,5	13,08	12,35	_	77,5	_	77,5
3	2[ОТАМФ-2]Cu ⁺²	>250	1,6	13,08	12,65	13,36	45,3	50,2	95,5
4	2[ОТАМФ-3]Cu ⁺²	>250	1,3	13,08	6,33	16,96	17,7	70,6	88,3
5	2[ОТАМФ-2]Co ⁺²	>250	3,8	12,25	5,65	13,08	40,2	31,0	71,2
6	2[ОТАМФ-2]Zn ⁺²	>250	Д.	13,42	13,41	13,23	19,5	22,9	67,4
7	2[ОТАМФ-2]Pb ⁺²	>250	Д.	32,93	22,07	28,16	30,5	47,9	74,4

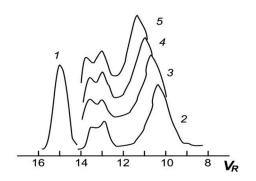

 Π р и м е ч а н и е . * Φ_1 и Φ_2 растворимые и нерастворимые фракции, TB — теоретически вычисленные значения количества металлов, д — диамагнетичность.

Таблица 2 Молекулярные характеристики и фракционные составы МПК с ацетатами переходных металлов

No	Комплексы	Димер,%	Три-	MMP				
п/п			мер,%	$M_{_{n}}^{^{*}}$	$M_{_{\scriptscriptstyle W}}$	$M_{_{\scriptscriptstyle W}}/M_{_{\scriptscriptstyle R}}$	M_p^{**}	
1	2[ТАМФ]Cu ⁺²	_	_	280	280	1,0	_	
2	2[ОТАМФ-1]Cu ⁺²	48	52	645	710	1,1	_	
3	2[OTAMФ-2]Cu ⁺²	11,2	9,5	725	2347	3,25	2510 (10,8)	
4	2[ОТАМФ-3]Cu ⁺²	9,8	12,7	715	2440	3,41	2585 (10,75)	
5	2[ОТАМФ-2]Co ⁺²	12,4	16,4	725	1974	2,71	1995 (11,2)	
6	2[OTAMФ-2]Zn ⁺²	13,2	17,0	730	1690	2,31	1680 (11,5)	
7	2[ОТАМФ-2]Pb ⁺²	9,5	12,5	910	2850	3,13	3160 (10,4)	

 Π р и м е ч а н и е . *Образцы 2–6 – M_n тримеров соответствующих МПК, $M_p^{\ **}$ – ММ соответствующие максимумам пиков высокомолекулярной части хроматограммы, в скобках объем удерживания V_p .

Наиболее высокая ММ в случае Pb⁺² $(M_n = 910, M_w = 2850)$, несомненно, связана с высокой атомной массой свинца (М = 207). Как показано, в отличие от ОТАМФ-2 и ОТАМФ-3, являющихся олигомерами, ОТАМФ-1 состоит из ди- и тримеров. Причем общее их содержание в составе образцов практически не превышает 30%. Из данных таблицы видно, что переход в комплексную форму, как и следовало ожидать, сопровождается ростом M_n образцов МПК (табл. 2, образцы 1–7 и кривые 1–5 на рисунке) примерно на массу одного атома соответствующего металла. Следует отметить, что сравнительно высокие значения M_{\odot} и M_{\odot} исследуемых образцов (2500–3000) дают основание полагать, что, меняя условие синтеза можно достичь получения ОТАМФ, следовательно, и МПК на их основе с более высокими ММ. Данное обстоятельство, несомненно, даст возможность получить МПК с регулируемыми параметрами ММР в достаточно широком диапазоне ММ.

Эксклюзионно-хроматографические кривые ММР МПК с ацетатами металлов. Кривая 1-ТАМФ, кривые 2–5 соответствуют образцам 7, 4, 3 и 5 в табл. 1 (1 счет = 0,13 мл)

Полученные комплексы по растворимости также заметно отличаются от исходных соединений. Так, растворимые фракции комплексов ОТАМФ-2 и ОТАМФ-3 хорошо растворимы в ${\rm H_2SO_4}$, ДМФА, ТГФ и диметилсульфоксиде. По сравнению с исходными олигомерами, комплексы хорошо растворяются в водной щелочи, этаноле, ацетоне, диоксане, этилацетате и не растворяются в ароматических растворителях и хлоруглеводородах.

В ИК-спектрах полученных МПК наблюдаются четкие отличия полос поглощений от спектров ОТАМФ-1, ОТАМФ-2, ОТАМФ-3 и ТАМФ. Сильная полоса поглощения азометиновых групп ТАМФ, на спектре его медного комплекса, в области 1618 см-1 при координации с атомами металла смещается в область 1608,5 см-1. Одновременно в области 424, 521 и 538 см-1 появляются полосы поглощения Ме-N и Ме-О связей со средней

интенсивностью. Интенсивность полос колебания фенольных ОН групп при 3450 см-1 после взаимодействия с медью ослабевают и смещаются в 3348 см-1. Полоса поглощения ароматических С-H, С=С (1600, 1575, 1512, 1456 см ⁻¹) и С=N, С=О связей (420, 501, 530 см-1) в спектрах ТАМФ и его медного комплекса аналогичны. В ИК-спектрах ОТАМФ-1 и их медного комплекса так же фиксируются похожие изменения в области появления полос поглощения CH=N и OH группы. Сильная полоса поглощения азометиновых групп ОТАМФ-1(1620 см-1) после его взаимодействия с Cu⁺², появляется чуть раньше в области 1610 см-1. Колебания Ме-О и Me-N связей наблюдаются при 420, 501, и 530 см $^{-1}$. ИК-спектры ОТАМ Φ -1, ОТАМ Φ -2и их медных комплексов идентичны.

Таким образом, исследование состава, структуры и свойств, в том числе магнитных, подтверждают структуру МПК, состоящих из макромолекулярных цепей ТАМФ звеньев, связанных с двухвалентными металлами через фенольные СО-Ме группы и координировавших азометиновыми заместителями.

Исследования термоокислительной деструкции методом ТГ показали, что синтезированные МПК начинают разлагаться при более высоких температурах (139–261 °C), чем разложения исходных веществ (184 °C). Комплексы Zn^{+2} , Co^{+2} , Pb^{+2} в процессе разложения теряют 5 % массы при более высоких температурах (150–157 °C), чем исходные олигомеры (130–134 °C).

Относительно высокая термостабильность МПК в этих условиях, вероятно, обусловлена с их трехмерно-сетчатой структурой. Однако при высоких температурах (>500°С) их разложение происходит более интенсивно, чем исходные олигомеры. Например, если температура полураспада образцов ОТАМФ равна 639 и 757°С, то аналогичные параметры у соответствующих МПК намного ниже и составляют 507 и 620°С. Этот факт, очевидно, связан с каталитическим действием металлов при высоких температурах на процесс окислительного разложения ОТАМФ. Наиболее высокую каталитическую активность проявляют Со⁺² и Pb⁺².

Среди испытанных МПК относительно высокая термостабильность характерна для комплексов Zn⁺² и Cu⁺². Как следует из данных табл. 3, температура полураспада указанных комплексов (620, 582°C) превышает температуру полураспада комплексов Co⁺² и Pb⁺² (465 и 507°C). При этом количество коксового остатка у испытываемых МПК, при 1120°C меняется в пределах 10,6–35,3%. Однако, если принимать во внимание содержание металлов в составе МПК (17,2–25,5%), то большая доля коксовых остатков

состоит из окисей соответствующих металлов. Например, количество коксового остатка в случае ОТАМФ-3 и его медного комплекса при 1120°С составляет 16,9 и 32%. Здесь из 32% лишь 6,04% является графитизированной органической частью комплекса, а 25,96% является окисью меди.

При изучении свойства растворимых фракций синтезированных МПК выявлена их антибиотическая активность по отношению к ряду микроорганизмов. Среди

МПК наивысшую антибиотическую активность показал медный комплекс ОТАМФ-2 (обр. II). Указанный комплекс ингибирует рост всех 12 микроорганизмов, испытываемых в работе (табл. 4). Комплексы Zn^{+2} , Co^{+2} и Pb^{+2} (образцы IV V и VI) показали ограниченное ингибирующее действие на рост микроорганизмов. А медный комплекс ОТАМФ-3 препятствовал лишь росту четырех микроорганизмов: P. vulgaris, M. luteus, S. thermophilus, Torulopsis holmii.

 Таблица 3

 Термоокислительная деструкция нерастворимых фракций МПК и исходных веществ

Свойства	Испытанные вещества								
	ТАМФ	ОТАМФ-2	ОТАМФ-3	М Π К*					
				1	2	3	4	5	6
T ₀ ,°C	184	130	134	261	139	127	150	146	157
T ₁ ,°C	243	239	200	300	216	202	246	250	245
T ₂ ,°C	306	757	639	409	582	488	620	465	507
К.О*	0.3	2.9	15.9	15.6	10.6	32.0	23.5	27.7	35.3

 Π р и м е ч а н и е . К.О – коксовый остаток при $1125\,^{\circ}\mathrm{C}; T_0$, T_1 и T_2 – температуры до и при 5 и $50\,\%$ распада, $^{\circ}\mathrm{C}$. *МПК: $1-2[\mathrm{TAM\Phi}]\mathrm{Cu}^{+2}, 2-2[\mathrm{OTAM\Phi}\text{-}2]~\mathrm{Cu}^{+2}, 3-2[\mathrm{OTAM\Phi}\text{-}3]\mathrm{Cu}^{+2}, 4-2[\mathrm{OTAM\Phi}\text{-}2]~\mathrm{Zn}^{+2}, 5-2[\mathrm{OTAM\Phi}\text{-}2]\mathrm{Co}^{+2}, 6-2[\mathrm{OTAM\Phi}\text{-}2]\mathrm{Pb}^{+2}.$

 $\label{eq: 2.1} \textbf{Таблица 4} \\ \textbf{ Антимикробная активность комплексов } (I-2[TAM\Phi]Cu^{+2}\ II-2[OTAM\Phi-2]Cu^{+2}, \\ III-2[OTAM\Phi-3]Cu^{+2}, IV-2[OTAM\Phi-2]Co^{+2}, V-2[OTAM\Phi-2]Zn^{+2}, V-2[OTAM\Phi-2]Pb^{+2}) \\ \textbf{ (I-2[OTAM\Phi-3]Cu^{+2}, IV-2[OTAM\Phi-2]Co^{+2}, V-2[OTAM\Phi-2]Zn^{+2}, V-2[OTAM\Phi-2]Pb^{+2})} \\ \textbf{ (I-2[OTAM\Phi-3]Cu^{+2}, IV-2[OTAM\Phi-2]Co^{+2}, V-2[OTAM\Phi-2]Zn^{+2}, V-2[OTAM\Phi-2]Zn^{+2})} \\ \textbf{ (I-2[OTAM\Phi-3]Cu^{+2}, IV-2[OTAM\Phi-2]Co^{+2}, V-2[OTAM\Phi-2]Zn^{+2}, V-2[OTAM\Phi-2]Zn^{+2})} \\ \textbf{ (I-2[OTAM\Phi-3]Cu^{+2}, IV-2[OTAM\Phi-2]Zn^{+2}, V-2[OTAM\Phi-2]Zn^{+2})} \\ \textbf{ (I-2[OTAM\Phi-3]Cu^{+2}, IV-2[OTAM\Phi-3]Cu^{+2})} \\ \textbf{ (I-2[OTAM\Phi-3]Cu^{+2})} \\ \textbf{$

Микроооорганизмы	МПК* и МБК катионов металлов, мкг/мл								
	I (Cu ⁺²)	II (Cu ⁺²)	III (Cu ⁺²)	IV (Co ⁺²)	V (Zn ⁺²)	IV (Pb ⁺²)			
L. monocytogenes	25 50	2,5 5	_	11 22	12 12	10 13			
B. brevis	30 60	2,25 4,5	_	10 12	_	12 12			
B. megaterium	30 60	2,25 4,5	_	13 15	10 10	_			
M. luteus	_	2,5	_	14 30	_	10 10			
B. cereus	25 55	2 4	_	_	10 10	12 12			
K. pneumonia	30 65	2 4	_	14 29	10 10	13 15			
M. smegmatis	_	3,25 6,5	_	15 33	13 13	10 10			
S. thermophilus	25 55	2 4	4 8	_	12 12	_			
S. aureus	25 55	2 4	_	15 32	_	13 13			
E. aerogenes	_	2,5 5	_	15 30	12 12	10 10			
Torulopsis holmii	30 60	3 6	4 8	_	10 10	10 10			
Vulgaris	25 50	2,75 5,5	6 12	14 28	10 10	12 12			

 Π р и м е ч а н и е . М Π К * — здесь минимальная подавляющая концентрация. Нижние цифры значения М Π К.

Как следует из данных таблицы, наиболее низкой антимикробной активностью обладает комплекс исходного 2[ТАМФ]Си⁺², в пределах 25–30 (МБК) и 50–65 (МПК). При этом переход к МПК (ОТАМФ) сопровождается резким повышением бактерицидности до десяти раз, что, несомненно, связано с ростом ММ комплексов. Уровни антимикробной активности применяемых МПК по отношению к разным микроорганизмам близки и практически меняются в одинаковых пределах.

Заключение

Таким образом, исследования свойства, состава и структуры позволили показать, что вновь синтезированные МПК содержат между- и внутримолекулярные О-Ме и N-Ме связи, и являются неплавкими (вплоть до 250°С) твердыми веществами. Среди них комплексы Cu⁺² и Co⁺² характеризуются магнитной восприимчивостью в пределах 1,3–3,8. МПК до 500°С достаточно термостабильны и при 1125°С образуют 10,6–35,3% коксовых остатков. Выше 500°С металлы катализируют термоокислительную деструкцию комплексов.

Полимерные комплексы подобного типа успешно применяются в качестве

катализаторов химических превращений, антибиотиков, а также при создании принципиально новых полифункциональных материалов с высокими эксплутационными свойствами и для решения других практически важных задач.

Список литературы

- 1. Xiao J.M., Zhang W. In situ synthesis and dielectric properties of copper (II) and nickel (II) chiral Schiff base complexes. Inorganic Chemistry Communications. 2009. V. 12. P. 1175–1183
- 2. Wang R.M, He N.P., Song P.F., He Y.F., Ding L., Lei Z.Q. Preperition of nani-chitosan Schiff-base copper complexs and their anticancer activity. Polymers advanced technologies. 2009. V. 20. P. 959–965.
- 3. Бекташи Н.Р. Синтез и исследование молекулярномасового распределения и структуры олигофенилазометинфенола и металлокомплексов на его основе // Нефтегазовые технологии и аналитика. 2017. № 9. С. 14–19.
- 4. Bektashi N.R. Size-Exclusion Chromatography of co oligoanilinazomethephenols. 24 National Chemistry Congress. Turkey, Zonguldak, 29 June-2 July 2010. P. 29.
- 5. Valipour A.Ya., Mamedov B.A, Mamedova R.I., Taryverdiev Sh., Bayramov G.K. Synthsis and properties of co polyanilinehydroxybenzaldehide. Novation, Periodical Scentific Journal. 2010. No.7. P. 153.
- 6. Bektashi N.R., Alieva D.N., Jalilov R.A., Ragimov A.V. Liquid Chromatography of Oligoepichlorohydrin. Polymer Science Ser. B. 2000. vol. 42. no. 9–10. P. 276.
- 7. Егоров Н.С. Руководство к практическим занятиям по микробиологии. М.: МГУ, 1995. 224 с.