УДК 532.6:546.22

ОЦЕНКА ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ НАНОЧАСТИЦ НЕКОТОРЫХ ОКСИДОВ МЕТАЛЛОВ

Юров В.М., Лауринас В.Ч., Гученко С.А.

Карагандинский государственный университет им. Е.А. Букетова, Караганда, e-mail: exciton@list.ru

В работе предложен метод определения поверхностного натяжения оксидов металлов по размерной зависимости интенсивности люминесценции от размера зерна люминофора. Способ апробирован при определении поверхностного натяжения диэлектрических кристаллов КСІ с примесью ионов таллия в качестве люминесцирующего зонда. По величине поверхностного натяжения предложен метод определения температуры плавления наночастицы при различных ее размерах. Для наночастиц оксидов металлов определены температуры плавления уменьшается до 1000 К. Это необходимо учитывать при многих технологических процессах. В работе показано, что размерный параметр d определяется только фундаментальной величиной – атомным объемом вещества υ, который изменяется периодически в соответствии с таблицей Д.И. Менделеева. Предложенный метод определения поверхностного натяжения может быть использовано также для оценки энергии диспергирования оксидов металлов, которые входят в состав большого количества минералов и руд. Это важно, поскольку самая затратная операция в горной промышленности – это измельчение руд. Полученная в работе связь между температурой плавления и поверхностной энергией может быть использована для определения. Это важно, поскольку определения с величины. Это важно, поскольку определения с непростая задача.

Ключевые слова: температура плавления, поверхностное натяжение, размерный эффект

EVALUATION OF THE TEMPERATURE OF MELTING OF NANOPARTICLES OF SOME METAL OXIDES

Yurov V.M., Laurinas V.Ch., Guchenko S.A.

Karaganda State University of E.A. Buketov, Karaganda, e-mail: exciton@list.ru

In this paper, a method is proposed for determining the surface tension of metal oxides from the size dependence of the luminescence intensity on the grain size of the phosphor. The method was tested when determining the surface tension of dielectric KCl crystals with an admixture of thallium ions as a luminescent probe. According to the magnitude of the surface tension, a method is proposed for determining the melting point of a nanoparticle at its different sizes. For nanoparticles of metal oxides, melting points at 10, 25, and 50 nm were determined. It is shown that with decreasing particle size to 10 nm, the melting point decreases to 1000 K. This must be taken into account in many technological processes. The paper shows that the dimensional parameter d is determined only by the fundamental value – the atomic volume of the substance v, which changes periodically in accordance with the D. Mendeleev table. The proposed method for determining the surface tension can also be used to estimate the energy of dispersion of metal oxides, which are part of a large amount of minerals and ores. This is important because the most expensive operation in the mining industry is the grinding of ores. The relationship between the melting point and the surface energy of solids is a very difficult task.

Keywords: melting point, surface tension, size effect

Наночастицы оксидов многих металлов находят широкое применение в различных областях науки и техники, медицине: в качестве керамики, катализатора химических реакций, очистителя органических загрязнений, активного элемента солнечных батарей, газовых сенсоров, фармакологии и др. (например, [1–3] и библиография в них).

Важнейшая характеристика наночастиц – это температура плавления. Первой экспериментальной работой по этой проблеме является, пожалуй, работа [4], а вот первая теоретическая работа появилась еще в 1909 г. [5]. В последние годы интерес к этой проблеме не ослабевает [6–9].

В настоящей работе экспериментально определена температура плавления некоторых наночастиц оксидов металлов по методике [10–12] и предложена универсальная эмпирическая зависимость, справедливая и для более сложных наноструктур.

Материалы и методы исследования

В основе нашего подхода [11, 12] лежит размерная зависимость некоторого физического свойства [10]. В рассматриваемом случае – это размерная зависимость рентгенолюминесценции оксидов некоторых металлов [11]:

$$I(r) = I_0 \cdot \left(1 - \frac{d}{r}\right), r \gg d,$$

$$I(r) = I_0 \cdot \left(1 - \frac{d}{d+r}\right), r \le d.$$
 (1)

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 1, 2019 Здесь I_0 – начальная интенсивность рентгенолюминесценции, I(r) – интенсивность свечения частицы радиусом r, d – параметр, который равен [11]:

$$d = \frac{2\sigma \upsilon}{RT},\tag{2}$$

где σ – поверхностное натяжение оксида, υ – молярный объем оксида, R – газовая постоянная, T – температура.

Способ применяли для определения поверхностного натяжения диэлектрических кристаллов *KCl*, с примесью ионов таллия в качестве люминесцирующего зонда. Интенсивность рентгенолюминесценции определялась стандартным фотоэлектрическим методом. Размер зерна диэлектрика определялся с помощью металлографического микроскопа Эпиквант. Результаты показаны на рис. 1. В координатах $I \sim 1/r$ экспериментальная кривая спрямляется в соответствии с (1), давая значение d = 0,02 мкм. Для *KCl* 9 = 37,63 см³/моль и из (2) для поверхностного натяжения получено: $\sigma = 0,221$ ·Дж/м². Температура плавления оксида определялась по формуле [13]:

$$\sigma = 0, 7 \cdot 10^{-3} T_m, (Дж/м^2), \tag{3}$$

*T*_{*m*} – температура плавления.

Рис. 1. Зависимость интенсивности рентгенолюминесценции KCl – Tl от размера зерна люминофора

Результаты исследования и их обсуждение

По методике, описанной выше, были исследованы размерные зависимости оксидов некоторых металлов. Пример такой зависимости показан на рис. 2.

В табл. 1 приведены значения температуры плавления массивных образцов оксидов некоторых металлов и образцов размером r = 10, 25 и 50 нм.

Рис. 2. Размерная зависимость относительной рентгенолюминесценции от размера зерна люминофора

Оксиды Cs₂O, Tl₂O₃, Ag₂O, Au₂O₃, MnO₂, ReO₂, как следует из табл. 1, оказываются при комнатной температуре нестабильны – $T_m < 0$ °C = 273,15 К. Оксид цезия Cs₂O – оранжево-красные гексагональные кристаллы. В виде минерального сырья в природе эти оксиды не встречаются, а получаются искусственным путем. Оксид таллия Tl₂O₂ – тёмно-коричневые кристаллы. Не растворяется в воде, щелочах. Реагирует с кислотами. Оксид серебра Ад,О – порошок коричнево-черного цвета. Ag₂O практически нерастворим в большинстве известных растворителей, исключая те, с которыми он взаимодействует химически. Оксид золота Au₂O₃ – аморфен. Имеет красный или красно-бурый цвет. Оксид марганца MnO₂ – порошок тёмно-коричневого цвета, нерастворимый в воде. Наиболее устойчивое соединение марганца, широко распространённое в земной коре минерал пиролюзит. Оксид рения ReO₂ светло-жёлтые диамагнитные кристаллы ромбической сингонии.

Из табл. 1 также следует, что температура большей части оксидов уменьшается на тысячу градусов и более при уменьшении размеров наночастиц менее 10 нм. Это необходимо учитывать при многих технологических процессах.

Если теперь уравнение (3) подставить в (2) при $T = T_m$, то получим

$$d = 1, 7 \cdot 10^{-4} \cdot \upsilon.$$
 (4)

Уравнение (4) показывает, что размерный параметр d определяется только фундаментальной величиной – атомным объемом вещества v, который изменяется периодически в соответствии с таблицей Д.И. Менделеева (рис. 3).

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ № 1, 2019 Температура плавления наночастиц оксидов металлов

Таблица 1

Соединение	d, нм	Т ₀ , К	T(r), K r = 10 HM	T(r), К r = 25 нм	T(r), K r = 50 HM
Li ₂ O	2,059	1873	1498	1723	1798
Na ₂ O	3,131	1405	984	1236	1321
K ₂ O	4,210	1013	608	851	932
Rb ₂ O	4,876	778	389	622	700
Cs ₂ O	6,115	633	253	481	557
BeO	4,011	2803	1682	2355	2579
MgO	3,241	3098	2169	2726	2912
CaO	5,817	2843	1137	2160	2502
SrO	7,053	2703	811	1946	2325
BaO	8,254	2193	439	1491	1842
Al ₂ O ₂	7,376	2317	695	927	1993
Ga ₂ O ₂	2,876	2013	1409	1771	1892
In ₂ O ₂	5,117	2183	1092	1746	1965
Tl ₂ O ₂	8,151	1107	221	753	930
SiO	11,907	2001	910	1041	1521
GeO	8,670	1389	731	889	1139
SnO	3,460	1353	812	1137	1245
PbO	4,528	1159	580	927	1043
CuO	5,286	1720	360	1376	1548
Ag ₂ O	12,700	553	166	266	394
Au ₂ O ₂	15,189	428	171	268	300
ZnO	3,072	2073	1451	1824	1949
CdO	2,994	1273	891	1120	1197
CrO ₂	24,453	2708	797	1381	1829
MoO,	27,537	1074	290	516	697
WO,	37,211	1743	371	703	1001
MnO ₂	8,280	808	161	485	679
TcO	14,492	1373	572	880	989
ReO ₂	19,814	577	192	321	346
Fe ₂ O ₂	17,269	1839	681	1034	1214
CoO	6,297	2208	883	1678	1943
NiO	5,944	1955	782	1486	1720
Ce ₂ O ₃	17,269	2673	990	1591	1764
Pr ₂ O ₃	17,718	2273	812	1322	1455
Nd ₂ O ₃	18,744	2593	894	1473	1608
Sm ₂ O ₃	19,230	2543	877	1445	1577
Eu ₂ O ₂	17,654	2564	916	1491	1641
Gd ₂ O ₂	24,133	2623	771	1348	1786
Tb ₂ O ₂	22,472	2432	760	1294	1689
Dy ₂ O ₂	24,738	2681	766	1341	1787
Ho ₂ O ₂	71,797	2632	321	678	1079
Er ₂ O ₂	24,281	2653	780	1354	1793
Yb ₂ O ₃	14,610	2703	1081	1689	1892

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 1, 2019

Рис. 3. Периодическое изменение молярного объема

Таблица 2

Работа диспергирования для оксидов металлов

Соединение	Поверхностное	Удельная поверхность частиц S, см ² /г					
	натяжение		5x10 ⁴	1x10 ⁵	5x10 ⁵	1x10 ⁶	
Li ₂ O	0,173	173	865	1730	8650	17300	
Na ₂ O	0,143	143	715	1430	7150	14300	
K ₂ O	0,131	131	655	1310	6550	13100	
Rb ₂ O	0,121	121	605	1210	6050	12100	
Cs ₂ O	0,118	118	590	1180	5900	11800	
BeO	0,602	602	3010	6020	30100	60200	
MgO	0,359	359	1795	3590	17950	35900	
CaO	0,436	436	2180	4360	21800	43600	
SrO	0,399	399	1995	3990	19950	39900	
BaO	0,384	384	1920	3840	19200	38400	
Al ₂ O ₃	0,360	360	1800	3600	18000	36000	
Ga ₂ O ₃	0,124	124	620	1240	6200	12400	
In ₂ O ₃	0,165	165	825	1650	8250	16500	
Tl ₂ O ₃	0,225	225	1125	2250	11250	22500	
SiO ₂	0,655	655	3275	6550	32750	65500	
GeO ₂	0,437	437	2185	4370	21850	43700	
SnO	0,199	199	995	1990	9950	19900	
PbO	0,231	231	1155	2310	11550	23100	
CuO	0,523	523	2615	5230	26150	52300	
Ag ₂ O	0,488	488	2440	4880	24400	48800	
Au ₂ O	0,524	524	2620	5240	26200	52400	
ZnO	0,264	264	1320	2640	13200	26400	
CdO	0,237	237	1185	2370	11850	23700	
HgO	0,090	90	450	900	4500	9000	
CrO ₃	0,854	854	4270	8540	42700	85400	
MoO ₃	1,119	1119	5595	11190	55950	111900	
WO ₃	1,443	1443	7215	14430	72150	144300	
Fe ₂ O ₃	0,707	707	3535	7070	35350	70700	

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ №1, 2019

	Окончание табл. 2						
Соединение	Поверхностное	Удельная поверхность частиц S, см ² /г					
	натяжение	1x10 ⁴	5x10 ⁴	1x10 ⁵	5x10 ⁵	1x10 ⁶	
CoO	0,676	676	3380	6760	33800	67600	
NiO	0,662	662	3310	6620	33100	66200	
Ce ₂ O ₃	0,423	423	2115	4230	21150	42300	
Pr ₂ O ₃	0,467	467	2335	4670	23350	46700	
Nd ₂ O ₃	0,503	503	2515	5030	25150	50300	
Sm ₂ O ₃	0,511	511	2555	5110	25550	51100	
Eu ₂ O ₃	0,456	456	2280	4560	22800	45600	
Gd ₂ O ₃	0,615	615	3075	6150	30750	61500	
Dy ₂ O ₃	0,646	646	3230	6460	32300	64600	
Ho ₂ O ₃	0,673	673	3365	6730	33650	63700	
Er ₂ O ₃	0,684	684	342	6840	3420	68400	
Tm ₂ O ₃	0,705	705	3525	7050	35250	70500	
Yb ₂ O ₃	0,424	424	2120	4240	21200	42400	
Lu ₂ O ₃	0,746	746	3730	7460	37300	74600	

Уравнение (3) может быть использовано также для оценки энергии диспергирования оксидов металлов, которые входят в состав большого количества минералов и руд. Самая затратная операция в горной промышленности – это измельчение руд. Соответствующие расчеты даны в табл. 2.

Заключение

В работе предложены:

 метод определения поверхностного натяжения оксидов металлов по размерной зависимости интенсивности люминесценции от размера зерна люминофора;

 метод определения температуры плавления наночастицы при различных ее размерах;

 метод оценки энергии диспергирования оксидов металлов, которые входят в состав большого количества минералов и руд.

В работе показано, что размерный параметр *d* определяется только фундаментальной величиной – атомным объемом вещества.

Полученная в работе связь между температурой плавления и поверхностной энергией может быть использована для определения ее величины. Это важно, поскольку определение поверхностной энергии твердых тел очень непростая задача.

Работа выполнена по программе МОН РК. Гранты № 0118РК000063 и № Ф.0780.

Список литературы

1. Woodley S.M., Hamad S., Mejias J.A., Catlow C.R.A. Properties of small TiO., ZrO, and HfO, nanoparticles. J. Mater. Chem. 2006. Vol. 16. № 20. P. 1927–1933.

2. Gupta S.M., Tripathi M. A review of TiO, nanoparticles. Chinese Sci. Bull. 2011. Vol. 56 № 16. P. 1639–1657. DOI: 10.1007/s11434-011-4476-1.

3. Пугачевский М.А. Стабилизация наночастиц оксидов переходных металлов IV группы при лазерной абляции: дис. ... д-ра физ.-мат. наук. Хабаровск, 2015. 270 с.

4. Buffat P., Borel J.P. Size effect on the melting temperature of gold particles. Phys. Rev. A. 1976. Vol. 13. P. 2287–2294.

5. Pawlow P.J. Uher die Ahhangigkeit des Schmeltzpunktes von der Oberflachenenergie eines festen Korpers. Zs. Phys. Chem. 1909. Vol. 65. P. 1–35.

6. Макаров Г.Н. Экспериментальные методы измерения температуры и теплоты плавления кластеров и наночастиц // УФН. 2010. Т. 180. № 2. Р. 185–207.

7. Guisbiers G. Review on the analytical models describing melting at the nanoscale. J. Nanosci. Lett. 2012. V. 2. No. 8. P. 1–10.

8. Самсонов В.М., Сдобняков Н.Ю., Васильев С.А., Соколов Д.Н. О размерной зависимости теплот плавления металлических нанокластеров // Известия РАН. Серия физическая. 2016. Т. 80. № 5. С. 494–496.

9. Liang T., Zhou D., Wu Z., Shi P. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study // Nanotechnology. 2017. Vol. 28. No. 48. P. 485–704.

10. Юров В.М. Температура плавления наночастиц // Вестник КарГУ: сер. Физика. 2012. № 3 (67). С. 22–27.

11. Юров В.М., Ещанов А.Н., Кукетаев А.Т. Способ измерения поверхностного натяжения твердых тел // Патент РК № 57691. Опубл. 15.12.2008. Бюл. № 12.

12. Юров В.М. Способ измерения поверхностного натяжения люминофоров // Патент РК № 23223. Опубл. 27.11.2010. Бюл. № 11.

13. Рехвиашвили С.Ш., Киштикова Е.В., Кармокова Р.Ю., Кармоков А.М. К расчету постоянной Толмена // Письма в ЖТФ. 2007. Т. 33. Вып. 2. С. 1–7.