ХИМИЧЕСКИЕ НАУКИ

УДК 548.736.398:546.682

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ В СИСТЕМЕ InTe-Sb, Te,

¹Мамедова Н.А., ¹Алиев И.И., ²Мехтиева С.Т., ³Амирасланов И.Р.

¹Институт катализа и неорганической химии им. М.Ф. Нагиева НАН Азербайджана,

Баку, e-mail: aliyevimir@rambler.ru;

²Гянджинский государственный университет, Гянджа; ³Институт физики НАН Азербайджана

В данной работе комплексными методами физико-химического анализа изучено взаимодействие компонентов и построена T-х-фазовая диаграмма системы InTe-Sb,Te,. Система квазистабильная и в субсолидусе кристаллизуются два двухфазных сплава (α + In,Sb,Te₆) и (β + InSb,Te₄). В системе образуются два дусс пристальнуются два двухразных сплава (а n_3 сь), п (р n_5 с), города, р спотеля сораз, вся два соединения составов In₃Sb₂Te₆ и InSb₂Te₆. Соединение In₃Sb₂Te₆ плавится конгрузнтно при 575 °C, а соединение InSb₂Te₄. инконгрузнтно при 590 °C. В системе определена узкая область твердых растворов на основе исходных компонентов. Область твердых растворов на основе InTe простирается до 3 мол. %, а на основе Sb₂Te₃ – до 5 мол. %. Результаты рентгенографических данных показали, что соединение In₃Sb₂Te₆ кристаллизуется в ромбоэдрической сингонии с параметрами решетки: a = 4,2248; b = 4,2248; c = 30,3229 Å. пр.гр.R-3m. Соединение InSb, Te, изоструктурно с In, Sb, Te, и кристаллизуется в ромбоздрической сингонии с параметрами элементарной ячейки: a = 4,2374; b = 4,2374; c = 30,3938 Å. пр.гр. R-3m. Часть диаграммы состояния системы α + In₃Sb₂Te₆ образует эвтектику состава 17 мол. % Sb, Te, и плавится при 525 °C. Соединения In₃Sb₂Te₆ и InSb₂Te₄ между собой образуют эвтектику состава 32 мол. % Sb₂Te₃ и плавится при 550 °C. Для определения полупроводникового характера и области применения полученннных образцов изучены электрофизические свойств в интервале температур 25-300 °C. Изучены температурная зависимость электропроводности и термо-э.д.с. твердых растворов (Sb,Te₃)_{1,2}(InTe₃, (где x = 0,01; 0,02; 0,03; 0,05). Концентрационная зависимость электрофизических параметров указывает на процес компенсации носителей зарядов при малых содержаниях InTe в Sb,Te,. Полученные сплавы твердых растворов на основе Sb,Te, являются полупроводниками р-типа проводимости.

Ключевые слова: система, твердый раствор, квазибинарный, эвтектика, солидус

INVESTIGETION OF INTERACTION IN InTe-Sb, Te, SYSTEM

¹Mamedova N.A., ¹Aliev I.I., ²Mekhtieva S.T., ³Amiraslanov I.R.

¹Institute of Catalysis and Inorganic Chemistry named after M.F. Nagiyev National Academy of Sciences of Azerbaijan, Baku, e-mail: aliyevimir@rambler.ru;

²Ganja State University, Ganja;

³Institute of Physics, National Academy of Sciences of Azerbaijan

In this work, the interaction of components was studied by complex methods of physicochemical analysis and the T-x phase diagram of the InTe-Sb₂Te₃ system was constructed. The system is quasistable and two biphasic alloys ($\alpha + \ln_3$ Sb₂Te₄) and ($\beta + \lnSb_2$ Te₄) crystallize in the subsolidus. Two compounds of the compositions In₃Sb₂Te₆ and InSb₂Te₄ are formed in the system. The In₃Sb₂Te₆ compound melts congruently at 575 °C, and the InSb₂Te₄ compound is incongruent at 590 °C. In the system was defines a narrow region of solid solutions based on the starting components. The region of solid solutions based on InTe extends to 3 mol%, and the based Sb₂Te₃ – up to 5 mol%. The results of X-ray diffraction data showed that the In₃Sb₂Te₆ compound crystallizes in a rhombohedral system with lattice parameters: a = 4.2248; b = 4.2248; c = 30.3229 Å. sp.gr.R-3m. The InSb₂Te₄ compound is structural with In₃Sb₂Te₆ and crystallizes in a rhombohedral system with unit cell parameters: a = 4.2374; b = 4.2374; c = 30.3938 Å. sp.gr. R-3m. Part of the state diagram of the $\alpha + \ln_3$ Sb₂Te₆ system forms a eutectic with a composition of 17 mol% Sb₂Te₃ and melts at 525 °C. Compounds In₃Sb₂Te₆ and InSb₂Te₄ with each other form a eutectic composition of 32 mol% Sb₂Te₃ and melts at 550 °C. To determine the semiconductor nature and field of application of the obtained samples, the electrophysical properties were studied in the temperature range 25-300 °C. The temperature dependence of electrical conductivity and thermo-emf was studied solid solutions (Sb₂Te₃)_{1.x}(InTe)_x (where x = 0.01; 0.02; 0.03; 0.05). The concentration dependence of the electrophysical parameters indicates the process of compensation of charge carriers at low InTe contents in Sb₂Te₃. The obtained alloys of solid solutions based on Sb₃Te₄ are p-type semiconductors.

Keywords: system, solid solution, quasi-binary, eutectic, solidus

Халькогениды элементов III основной подгруппы, а также многокомпонентные полупроводниковые фазы на их основе являются фотоэлектрическими и магнитными материалами [1]. Халькогениды индия обладают своеобразными термоэлектрическими и люминесцентными свойствами [2–4].

В литературе [5–7] показано, что соединение Sb₂Te₃ и сплавы на его основе как термоэлектрические материалы используются в электронной промышленности. Поэтому исследование характера взаимодействия между халькогенидами InTe с халькогенидами Sb₂Te₃ весьма актуально. Последние годы нами были исследованы некоторые квазитройные системы с участием халькогенидов индия и сурьмы [8, 9].

Целью настоящей работы является выяснение взаимодействия в системе InTe-Sb₂Te₃, а также определение области твердых растворов и новых соединений.

Соединение InTe плавится конгруэнтно при 696°С и имеет тетрагональную решетку с параметрами: a = 8,437; c = 7,139 Å, Z = 8, пр.гр. 14/mmc – D¹⁸_{4h}: его плотность $\rho = 6,29$ г / см³, микротвердость 960 МПа [10].

Соединение Sb₂Te₃ плавится конгруэнтно при 622 °С и кристаллизуется в ромбоэдрической-гексагональной сингонии с параметрами решетки: a = 1,0436 Å; $a_n = 4,262$ Å; c = 30,450 Å, $\beta = 23°34$, пр.гр. R3m-D⁵₃₄, $\rho = 6,513$ г/см³ [10].

Материалы и методы исследования

Для синтеза исходных компонентов системы InTe-Sb₂Te₃ были использованы особо чистые элементы: индий марки In-000, сурьма марки 99,999% и теллур марки В-4, дополнительно очищенный семикратной дистилляцией. Тройные сплавы получали непосредственным сплавлением компонентов в эвакуированных до 0,133 Па кварцевых ампулах в интервале температур 700-900°С. Режим синтеза подбирали исходя из физико-химических свойств элементарных компонентов и бинарных соединений (InTe, Sb₂Te₃) и предварительных данных ДТА тройных сплавов. После синтеза образцы выдерживались при 500 °C в течение 240 ч. Сплавы системы InTe-Sb₂Te₂ исследовали методами дифференциально-термического (ДТА), рентгенофазового (РФА), микроструктурного (МСА) анализов, а также измерением микротвердости и определением плотности.

Термограммы образцов системы InTe-Sb₂Te₃ снимали на приборе марки TEMSCAN-2 со скоростью нагревания 10 град/мин. Термограммы некоторых образцов снимали до и после отжига до получения стабильных результатов.

Рентгенограммы сплавов снимали на рентгеновском приборе модели D2 PHASER с использованием СиКα излучения. Микроструктурный анализ сплавов проводили на металлографическом микроскопе марки МИМ-8. Для выявления микроструктуры сплавов использовали травитель состава HNO₃конц: H₂O₂ = 2:1, время травления составило 10 с.

Микротвердость каждой фазы измеряли на приборе марки ПМТ-3 при нагрузке 0,10 и 0,15 Н. Плотность для образцов определяли пикнометрическим методом. Электрофизические свойства твердых растворов $(Sb_2Te_3)_{1-x}(InTe)_x$ (x = 0,01; 0,02; 0,03; 0,05) изучены в интервале температур 25–300 °С. Измерения электропроводности и термоэ.д.с. проводили зондовым методом [11].

Результаты исследования и их обсуждение

Синтезированные сплавы системы InTe-Sb₂Te₃ компактные светло-серого цвета. Сплавы устойчивы по отношению к воздуху и воде. Концентрированные минеральные кислоты (HNO_3 , H_2SO_4) и щелочи разлагают их.

Результаты ДТА показали, что все фиксированные термические эффекты на кривых нагревания и охлаждения обратимые. На термограммах сплавов системы обнаружены по два эндотермических эффекта. Микроструктурный анализ сплавов системы InTe-Sb₂Te₃ показал, что в интервале 0–3, 25, 50 и 95–100 мол. % Sb₂Te₃ сплавы однофазные, а остальные сплавы двухфазные.

С целью подтверждения результатов ДТА и МСА проводили рентгенофазовый анализ. На основании порошковых рентгенограмм вычислены межплоскостные расстояния и интенсивность дифракционных максимумов. Установлено, что дифрактограммы сплавов, содержащих 25 и 50 мол. % Sb₂Te₃ отличаются от исходных соединений (рис. 1).

Рис. 1. Дифрактограммы сплавов системы InTe-Sb,Te₃: $1 - 25 \text{ мол \% Sb}_2\text{Te}_3(\text{In}_3\text{Sb}_2\text{Te}_6), 2 - 50 \text{ мол \% Sb}_3\text{Te}_3(\text{InSb}_7\text{Te}_3)$

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH № 2, 2020

Таблица 1

	InSb ₂ Te ₄								
d,Å	I.%	h	К	1	d ,Å	I.%	h	к	1
10.10767	12.9	0	0	3	10.13127	8.7	0	0	3
5.05383	25.4	0	0	6	5.06563	18.4	0	0	6
3.55668	20,9	1	0	2	3.37709	12.9	0	0	9
3.36922	18,6	0	0	9	3.14161	100.0	1	0	5
3.13281	100.0	1	0	5	2.63947	4.9	1	0	8
2.63245	6.0	1	0	8	2.34077	29.6	1	0	10
2.33470	26.0	1	0	10	2.20734	5.8	1	0	11
2.20168	7.3	1	0	11	2.11869	21.1	1	1	0
2.11239	18.3	1	1	0	2.02625	18.2	0	0	15
2.06772	3.3	1	1	3	1.97180	7.5	1	0	13
2.02153	18.0	0	0	15	1.86850	3.1	1	0	14
1.96684	7.7	1	0	13	1.79473	2.9	1	1	9
1.94899	3.5	1	1	6	1.69013	12.4	2	0	7
1.86383	4.8	1	0	14	1.68854	10.8	0	0	18
1.75144	8.0	2	0	5	1.57081	5.6	2	0	10
1.68461	10.6	0	0	18	1.46640	6.2	1	0	19
1.56641	5,5	2	0	10	1.46436	6.0	1	1	15
1.52427	1.8	2	0	11	1.40406	2.9	1	0	20
1.46284	6.1	1	0	19	1.35226	4.0	2	1	5
1.46050	5.8	1	1	15	1.31974	4.2	2	0	16
1.44395	5.2	0	0	21	1.26183	2.8	2	1	10
1.43948	3.8	2	0	13	1.24331	4.2	Ι	0	23
1.40066	3.7	1	0	20	1.23960	2.6	2	1	11
1.36044	2.6	2	1	4					
1.34828	48	2	1	5					
1.31739	4.4	2	1	7					
1.25822	5.0	2	1	10					
1.24033	4.9	1	0	23					

Межплокостные расстояния (d, hkl) и интенсивность линий на дифрактограмме соединений In₃Sb₅Te₆ и InSb₅Te₄

Соединение $In_3Sb_2Te_6$ плавится конгруэнтно при 575 °С и кристаллизуется в ромбоэдрической сингонии с параметрами: a = 4,2248; b = 4,2248; c = 30,3229; пр.гр. R-3m. Соединение InSb₂Te₄ плавится инконгруэнтно при 590 °С, изоструктурно с $In_3Sb_2Te_6$, и кристаллизуется в ромбоэдрической сингонии с параметрами элементарной решетки: a = 4,2374; b = 4,2374; c = 30,3938; пр.гр. R-3m. Рентгенографические данные соединений $In_3Sb_2Te_6$ и InSb₂Te₄ приведены в табл. 1.

Фазовая диаграмма системы InTe-Sb₂Te₃, построенная по совокупности данных вышеуказанных методов, приведена на рис. 2. Установлено, что в системе при соотношении 3:1 и 1:1 образуются химические соединения составов In₃Sb₂Te₆, InSb₂Te₄ соответственно.

Ликвидус системы состоит из четырех кривых моновариантных равновесий: α-фаза, новые соединения In₃Sb₂Te₆, InSb₂Te₄ и β-фаза (твердые растворы на основе Sb₂Te₃). α -фаза с соединением In₃Sb₂Te₆ образует эвтектику состава 17 мол. % Sb₂Te₃ при 525 °C. Координаты второй эвтектики составляет 32 мол. % Sb₂Te₃ при 550 °C.

Некоторые физико-химические данные сплавов системы InTe-Sb₂Te₃ приведены в табл. 2. При измерении микротвердости сплавов системы InTe-Sb₂Te₃ получены четыре ряда значений табл. 2.

Для α -фазы микротвердость изменяется в пределах (960–1020) МПа, значение микротвердости (1100–1120) МПа соответствует фазе In₃Sb₂Te₆, значение микротвердости (1330–1350) МПа соответствует фазе InSb₂Te₄, для β-фазы значения микротвердости изменяется в пределах (860–880) МПа.

Электрофизические свойства твердых растворов $(Sb_2Te_3)_{1-x}(InTe)_x$ (где x = 0,01; 0,02; 0,05) измерены в интервале T = 300–575 К. Температурная зависимость удельной электропроводности твердых растворов на основе Sb_2Te_3 приведена на рис. 3. Как видно, с ростом температуры электропроводность для всех образцов твердых растворов $(Sb_2Te_3)_{I-x}(InTe)_x$ (где x = 0,01; 0,02; 0,05) значительно уменьшается, а в дальнейшем, с ростом температуры, увеличивается.

При температуре 300 К электропроводность для сплавов, содержащих 1, 2, 3, и 5 мол. % InTe, составляет $\sigma = 16,810^4 \text{ Om}^1\text{-m}^1$, 15,810⁴ Om¹-m⁻¹, 1410³ Om¹-m⁻¹ и 1210⁴ Om¹-m⁻¹, соответственно уменьшаясь с повышением содержания InTe в составе твердых растворов. Электропроводность падает в интервале температур T = 300–575 К, в этой области проводимость носит металлический характер, затем возрастает, что говорит о наступлении собственной проводимости (рис. 3).

Рис. 2. Т-х фазовая диаграмма системы InTe-Sb,Te,

Таблица 2

Составы, результаты ДТА, измерения микротвердости и определения плотности сплавов системы InTe-Sb₂Te₃

Состав, мол%		Термические	Плотность,	Микротвердость фаз, МПа				
InTe	Sb ₂ Te ₃	эффекты, °С	г/см ³	α	In ₃ Sb ₂ Te ₆	InSb ₂ Te ₄	β	
				P=0,15 H			P=0,10 H	
100	0,0	696	6,29	960	_	_	_	
97	3,0	600,680	6,30	970	_	_	—	
95	5,0	565,660	6,30	990	_	_	—	
90	10	525,625	6,30	1020	—	_	—	
83	17	525	6,31	Эвт.	Эвт.	_	—	
80	20	525,560	6,32	_	1120	_	—	
75	25	575	6,33	_	1100	—	—	
68	32	550	6,30	_	Эвт.	Эвт.	—	
60	40	550,590	6,33	-	_	1350	—	
50	50	590,605	6,37	_	_	1340	—	
40	60	590,610	6,34	-	_	1340	—	
30	70	590,615	6,40	_	_	1330	870	
20	80	590, 620	6,46	-	_	1330	870	
10	90	595, 620	6,48	_	_	_	880	
5,0	95	600	6,50	_	_	_	880	
0,0	100	622	6,51	_	_	_	860	

Рис. 3. Температурные зависимости электропроводности сплавов твердых растворов $(Sb_2Te_3)_{1-x}$ (InTe)_x: 1 - 0,01; 2 - 0,02; 3 - 0,03; 4 - 0,05)

На рис. 4 представлен график температурной зависимости коэффициента термо-э.д.с. сплавов твердых растворов $(Sb_2Te_3)_{1,x}(InTe)_x$. (x = 0,01; 0,02; 0,03; 0,05). С ростом температуры для сплавов содержащих 1, 2, 3 и 5 мол. % InTe соответственно, термо-э.д.с. возрастает до значений 87, 93, 97 и 100,5 мкВ/К, после чего постепенно падает с дальнейшим повышением температуры. Исследованные сплавы твердых растворов имеют р-тип проводимости.

Список литературы

1. Боледзюк В.Б., Кудринский С.Г., Ковалюк С.Д., Шевченко А.Д. Ферромагнетизм при комнатной температуре в слоистых полупроводниковых кристаллах InTe, интеркальованих кобальтом // Журн. нано- и электрон. физики. 2015. Т. 7. № 1. С. 01027.

2. Pandian Mannu, Matheswaran Palanisamy, Gokul Bandaru, Sathyamoorthy Ramakrisamy, Meena Ramcharan, Asokan Kandasami. Structural and thermoelectric properties of Se doped In₂Te₃ thin films. AIP Advances. 2018. V. 8. P. 115015. DOI: 10.1063/1.5057734.

3. Athorn Vorauda, Chanchana Thanachayanont, Suwit Jugsujinda, Vittaya Amornkitbamrungc, Tosawat Seetawana. Study on Electronic Structure of β -In, Te₃ Thermoelectric Materialfor Alternative Energy. Procedia Engineering. 2011. V. 8. P. 2–7. DOI: 10.1016/j.proeng.2011.03.001Get rights and content.

 Мехдиева И.Ф. Имамалиева С.З. Мирзоева Р.Дж., Бабанлы М.Б. Соединения типа новый класс тер-

Рис. 4. Температурные зависимости термо-э.д.с. сплавов твердых растворов $(Sb_2Te_3)_{Ix}$ (InTe)_x: 1 - 0,01; 2 - 0,02; 3 - 0,03; 4 - 0,05)

моэлектрических материалов с аномально низкой теплопроводностью // Микро- и нанотехнологии в электронике: IX Международная научно-техническая конференция. Нальчик, 2017. С. 108–112.

5. Eliana M.F. Vieira, Joana Figueirab, Ana L. Piresc, José Griloa, Manuel F. Silva, André M.Pereirac, Luis M.Goncalves. Enhanced thermoelectric properties of Sb₂Te₃ and Bi₂Te₃ films for flexible thermal sensors. Journal of Alloys and Compounds. 2019. V. 774, 5 February. P. 1102–1116. DOI: 10.1016/j. jallcom.2018.09.324.

6. Bin Xu, Jing Zhang, Gongqi Yu, Shanshan Ma, Yusheng Wang, and Yuanxu Wang Thermoelectric properties of monolayer Sb_2Te_3 . Journal of Applied Physics. 2018. V. 124. P. 165104. DOI: 10.1063/1.5051470.

7. Kulbachinskii V.A., Kytin V.G., Zinoviev D.A. et al. Thermoelectric Properties of Sb₂Te₃-Based Nanocomposites with Graphite. Semiconductors. 2019. V. 53. P. 638–640. DOI: 10.1134/S1063782619050129.

 Мамедова Н.А., Алиев И.И., Шахбазов М.Г. Физикохимическое исследование системы Sb₂Te₃-GaTe // Приоритеты инновационно-технологического развития в условиях глобализация: Международная научно-практическая конференция. Белгород, 27 февраля 2019. С. 14–16.

9. Заргарова М.И., Мамедов А.Н., Аждарова Д.С., Ахмедова (Велиев) Дж.А., Абилов Ч.И. Справочник: Неорганические вещества, синтезированные и исследованные в Азербайджане. Баку: Изд. Элм, 2004. 462 с.

 Физико-химические свойства полупроводниковых веществ. Справочник. М.: Изд-во Наука, 1979. 339 с.

11. Коломиец Н.Б. Измерение термоэлектродвижущей силы и удельного сопротивления в интервале температур от 20 до 1900 °С // Заводская лаборатория. 1962. Т. 28. № 2. С. 238–240.