УДК 616-056.5

ОСОБЕННОСТИ АКТИВНОСТИ АУТОФАГИИ У ЖЕНЩИН В ЗАВИСИМОСТИ ОТ МАССЫ И ВОЗРАСТА

^{1,2}Тхакушинов И.А., ^{1,2}Лысенков С.П.

¹ФГБОУ ВО «Майкопский государственный технологический университет», Майкоп; ²ООО «Центр Здоровье», Майкоп, e-mail: ibragimdrdautov@mail.ru

Исследована активность маркера аутофагии Beclin-1(беклин) у 50 женщин разных возрастов (28–68 лет) и веса. В результате проведенного исследования установлена сильная вариабельность показателя аутофагии. Выявлено наличие положительных корреляционных связей между концентрацией беклина и массой тела в молодом возрасте; между беклином и возрастом в группе пожилых. Также выявлены корреляционные связи между концентрацией Beclin-1 и отдельными показателями клинического анализа крови: у женщин среднего возраста – между беклином и гемоглобином ($\mathbf{r}=-0,34$; $\mathbf{p}<0,05$) и эозинофилами ($\mathbf{r}=0,71$; $\mathbf{p}<0,01$); у женщин пожилого возраста выявлена отрицательная корреляционная связь с количеством моноцитов ($\mathbf{r}=-0,59$; $\mathbf{p}<0,05$). Уровень беклина-1 находился в обратной корреляционной зависимости у лиц с нормальным весом с концентрацией гемоглобина ($\mathbf{r}=-0,68$; $\mathbf{p}<0,01$), количеством эритроцитов ($\mathbf{r}=-0,55$; $\mathbf{p}<0,01$) и в прямой зависимости с количеством эозинофилов ($\mathbf{r}=0,48$; $\mathbf{p}<0,05$). У женщин с ожирением выявлена прямая корреляционная связь только с количеством эозинофилов ($\mathbf{r}=0,58$; $\mathbf{p}<0,01$). В молодом возрасте выявлена отрицательная корреляционная связь только с количеством эозинофилов ($\mathbf{r}=0,58$; $\mathbf{p}<0,01$). В молодом возрасте выявлена отрицательная корреляционная связь с концентрацией липопротеидов высокой плотности ЛПВП. Система регуляции аутофагии является многоуровневой и не ограничивается исследуемыми факторами.

Ключевые слова: аутофагия, женщины, Beclin-1, масса тела, возраст, липидный обмен

FEATURES OF AUTOPHAGY ACTIVITY IN WOMEN DEPENDING ON WEIGHT AND AGE

1,2Tkhakushinov I.A., 1,2Lysenkov S.P.

¹Maykop State Technological University, Maykop; ²LLC «Center Health», Maykop, e-mail: ibragimdrdautov@mail.ru

The activity of the autophagy marker Beclin-1(beclin) was studied in 50 women of different ages (28-68 years) and weight. As a result of the study, a strong variability of the autophagy index was established. The presence of positive correlations between the concentration of beclin and body weight at a young age; between beclin and age in the elderly group was revealed. Also, correlations were revealed between the concentration of Beclin-1 and individual indicators of clinical blood tests in middle-aged women – between beclin and haemoglobin (r = -0.34; p < 0.05) and eosinophils (r = 0.71; p < 0, 01); elderly women showed a negative correlation with the number of monocytes (r = -0.59; p < 0.05). Beclin-1 level was inversely correlated in individuals with normal weight with haemoglobin concentration (r = -0.68; p < 0.01), erythrocytes (r = -0.55; p < 0.01) and in a straight-line dependence with the number of eosinophils (r = 0.48; p < 0.05). In obese women, a direct correlation was found only with the number of eosinophils (r = 0.58; p < 0.01). At a young age, a negative correlation was found with the concentration of high-density lipoprotein HDL. The autophagy regulation system is multilevel and is not limited to the studied factors.

Keywords: autophagy, women, Beclin-1, body weight, age, lipid metabolism

Аутофагия – один из мощнейших физиологических процессов, поддерживающих гомеостаз клетки [1]. В первую очередь аутофагия нейтрализует вещества и соединения. образующиеся в результате окислительного стресса [2]. В условиях развития различных форм патологии аутофагия оказывает защитное действие [3-5]. Для оценки активности процесса аутофагии используются различные маркеры [6], в частности белок Beclin-1. Однако для правильной трактовки результатов необходимы знания о поведении этих маркеров в физиологических условиях у лиц с различной массой, разного пола, характера питания и др. Получение таких данных позволяет оценивать процесс аутофагии при физиологических и патологических состояниях и, возможно, влиять на него.

Цель работы – установить особенности уровня маркера аутофагии Beclin-1 у женщин с различным весом и возрастом.

Материалы и методы исследования

Результаты были получены на 50 женщинах в возрасте от 28 до 68 лет, проходивших комплексную оздоровительную программу на базе клиники «Центр Здоровье» в г. Майкопе. Обследуемым проводили общеклиническое обследование (жалобы, сбор анамнеза, физикальное обследование, антропометрия), клинический и биохимический анализы крови (общий холестерин - ОХ, липопротеиды высокой плотности – ЛПВП, липопротеиды низкой плотности – ЛПНП, триглицериды – ТГ), определение показателей состава тела (мышечной массы – М.М., тощей массы – Т.М., жировой массы – Ж.М., общей воды тела – OBT, внеклеточной воды – Внек. В., внутриклеточной воды - Внут. В.) импедансометрическим способом на аппарате Medi Ld (France) с помощью программного обеспечения EIS-ESTECK (США). Вычисляли индекс массы тела (ИМТ) по Кетле: отношение массы тела (кг) к росту (м²). Ожирение диагностировалось при ИМТ > 30 кг/м². В качестве показателя активности процесса аутофагии был выбран маркер Beclin-1 (беклин-1). Забор крови производился утром натощак. Исследование сыворотки крови на содержание фермента Beclin-1 проводили при помощи тест-наборов «Cloud-Clone Corp» (USA), методом ИФА на аппарате «CLARIOstarplus» ВМС LABTECH (Germany). Концентрация маркера выражалась в пг/мл.

Обследуемые были разделены на возрастные группы, согласно рекомендациям ВОЗ: молодой возраст от 18 до 44 (n = 10), средний возраст от 44 до 60 лет (n = 28) и пожилой возраст от 60 до 75 лет (n = 12).

Обработка цифровых данных проводилась с использованием программного обеспечения IBM SPSSStatistics (26.0). Для характеристики статистического ряда использовалась описательная статистика (процентили 5–95%) с вычислением медианы, среднего значения, ошибки средней, минимального и максимального значения. Для сравнения средних значений использо-

вали непараметрический критерий Манна — Уитни. В целях выявления связей между исследуемыми параметрами использовался корреляционный анализ по Пирсону. Связь считалась достоверной при р < 0.05.

Результаты исследования и их обсуждение

Показатели беклина-1 отличались высокой вариабельностью, не вписывающейся в нормальное распределение. Разброс показателей в разных возрастных группах составил от 4,7 пг/мл до 216,6 пг/мл в межпроцентильном интервале 5–95% (табл. 1). При этом среднее значение в общей группе составило 59,2 пг/мл; медиана 44,3 пг/мл. Сравнительный непараметрический анализ показателей концентрации беклина-1 между возрастными группами в зависимости от возраста (табл. 1) не выявил статистических различий.

Аналогичный анализ был проведен у женщин с различной массой (табл. 2).

Предпринятый анализ также не выявил достоверных различий между сравниваемыми группами, что послужило мотивом провести корреляционный анализ (табл. 3) между исследуемыми параметрами.

 Таблица 1

 Сравнительный анализ показателей беклина в зависимости от возраста

Исследуемые группы/возраст	М ср.	σ	\mathbf{m}_0	Медиана	Min	Max	Р
1. Молодой (n = 10)	51,9	39,8	12,58	43,71	4,71	107,43	$P_{1-2} = 0.53$
2. Средний (n = 28)	63,32	51,66	9,76	45,79	12,9	216,62	$P_{1-3}^{1-2} = 0.85$
3. Пожилой (n = 12)	55,94	56,84	16,4	37,55	6,47	176,49	$P_{2-3} = 0,69$

Таблица 2 Сравнительный анализ уровня беклина в зависимости от массы тела

Исследуемые группы	М ср.	σ	m_0	Медиана	Min	Max	P
1. Нормальный вес (n = 19)	53,58	53,44	12,26	36,26	4,71	216,62	D -0.52
2. Ожирение (n = 31)	62,75	48,5	8,71	51,59	6,47	215,44	$P_{1-2} = 0.53$

Таблица 3 Корреляционный анализ между показателями состава тела и беклином в различных возрастных группах

Исследуемые группы/	1/ Коэффициент корреляции								
возраст	Возраст	Bec	ИМТ	M. M.	T. M.	Ж. М.	OBT	Внек. В.	Внут. В.
1. Вся группа (n = 50)	0,06	-0,09	-0,07	0,06	0,06	-0,08	0,06	-0,03	0,11
2. Молодой (n = 10)	0,12	0,63*	0,63*	0,06	0,06	0,54	0,06	-0,12	0,1
3. Средний (n = 28)	-0,05	-0,25	-0,22	0,11	0,11	-0,24	0,11	-0,05	0,2
4. Пожилой (n = 12)	0,57*	-0,05	-0,05	-0,05	-0,05	0,03	-0,05	-0,00	-0,07

 Π р и м е ч а н и е . ИМТ — индекс массы тела; М.М. — мышечная масса; Т.М. — тощая масса; Ж.М. — жировая масса; ОВТ — общая вода тела; Внек. В. — внеклеточная вода; Внут. В. — внутриклеточная вода.

^{* –} достоверность коэффициента корреляции p < 0.05.

Данный анализ показал, что существует средняя положительная корреляционная связь в группе молодого возраста между весом (рис. 1), ИМТ и беклином (r=0,63; p<0,05), а в группе пожилого возраста между возрастом и беклином (r=0,57; p<0,05) (табл. 3). Эти данные представляют особый интерес, так как свидетельствуют о том, что у исследуемых женщин в пожилом возрасте (60 и более лет) активность процесса аутофагии находится в прямой зависимости от возраста после достижения возрастного рубежа в 60 лет.

Представляло интерес исследовать возможные корреляционные взаимосвязи уровня беклина-1 с показателями клинического анализа крови (табл. 4).

При анализе данных были выявлены достоверные отрицательные корреляционные

связи между уровнем показателей гемоглобина и беклина во всей группе (r=-0,25; p<0,05) и в группе среднего возраста (r=-0,34; p<0,05). Такие же отрицательные корреляционные связи были выявлены между концентрацией моноцитов и беклином в пожилом возрасте (r=-0,59; p<0,05). Высокодостоверные положительные корреляционные связи выявлялись между уровнем эозинофилов и беклином в общей группе (r=0,53; p<0,01) и у обследованных женщин среднего возраста (r=0,71; p<0,01) (табл. 4). Показатель «индекс интоксикации» оказался вне зависимости от концентрации беклина-1.

Более значимые корреляционные связи между уровнем беклина и показателями клинического анализа крови были выявлены в группах различной массы (табл. 5).

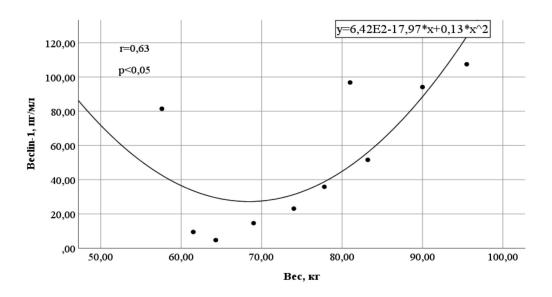


Рис. 1. График корреляционной зависимости между весом и концентрацией беклина в молодом возрасте

Таблица 4
Корреляционная зависимость между уровнем беклина
и показателями клинического анализа крови

Исследуемые груп-		Коэффициент корреляции										
пы/ возраст	Эр.	Гем.	Лейк.	Баз.	Эоз.	Нейт.	Лимф.	Мон.	СОЭ	ИИ		
1. Вся группа (n = 50)	-0,23	-0,25*	-0,09	0,04	0,53**	-0,09	0,03	-0,14	-0,02	0,11		
2. Молодой (n = 10)	-0,35	-0,27	0,09	-0,52	0,36	0,52	-0,35	-0,52	-0,24	0,33		
3. Средний (n = 28)	-0,23	-0,34 *	-0,15	0,34	0,71**	-0,21	-0,00	0,22	-0,00	0,27		
4. Пожилой (n = 12)	-0,23	0,08	-0,11	-0,36	0,04	-0,08	-0,25	-0,59 *	-0,07	-0,41		

Примечание. Эр. – эритроциты; Гем. – гемоглобин; Лейк. – лейкоциты; Баз. – базофилы; Эоз. – эозинофилы; Нейт. – нейтрофилы; Лимф. – лимфоциты; Мон. – моноциты; СОЭ – скорость оседания эритроцитов; ИИ – индекс интоксикации.

* — достоверность коэффициента корреляции р < 0,05; ** — достоверность коэффициента корреляции р < 0,01.

Таблица 5 Корреляционные связи между показателями крови и уровнем беклина у лиц с различной массой

Исследуемые группы	Коэффициент корреляции									
	Эр.	Гем.	Лейк.	Баз.	Эоз.	Нейт.	Лимф.	Мон.	СОЭ	ИИ
1. Нормальный вес (n = 19)	-0,68**	-0,55**	0,03	0,00	0,48*	0,26	-0,28	-0,24	0,18	0,25
2. Ожирение (n = 31)	0,01	-0,03	-0,18	0,07	0,58**	-0,3	0,2	-0,05	-0,11	0,03

 Π р и м е ч а н и е . Эр. — эритроциты; Гем. — гемоглобин; Лейк. — лейкоциты; Баз. — базофилы; Эоз. — эозинофилы; Нейт. — нейтрофилы; Лимф. — лимфоциты; Мон. — моноциты; СОЭ — скорость оседания эритроцитов; ИИ — индекс интоксикации.

* – достоверность коэффициента корреляции р < 0,05; ** – достоверность коэффициента корреляции р < 0,01.

Таблица 6 Корреляционный анализ между показателями липидного спектра и уровнем беклина в различных возрастных группах

Возрастные группы/воз-	Коэффициент корреляции								
раст	ЛПНП	ЛПВП	Общий холестерин	Триглицериды					
1. Вся группа (n = 50)	0,11	-0,03	0,14	-0,1					
2. Молодой (n = 10)	0,33	-0,6*	-0,03	0,21					
3. Средний (n = 28)	0,27	0,15	0,27	-0,15					
4. Пожилой (n = 12)	-0,41	0,00	-0,32	-0,14					

 Π р и м е ч а н и е . ЛПНП — липопротеиды низкой плотности; ЛПВП — липопротеиды высокой плотности.

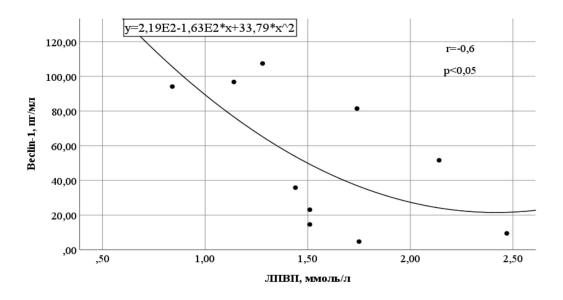


Рис. 2. График корреляционной зависимости между ЛПВП и беклином в молодом возрасте

У лиц с нормальным весом наблюдалась средняя отрицательная корреляционная связь между количеством эритроцитов (r = -0.68; p < 0.01), концентрацией гемоглобина (r = -0.55; p < 0.01) и беклином и положительная достоверная связь между количеством эозинофилов (r = 0.48; p < 0.05) и беклином. В группе лиц с ожирением выявилась высоко достоверная положительная корреляционная связь между количеством

эозинофилов (r = 0.58; p < 0.01) и концентрацией беклина (табл. 5).

Корреляционный анализ между уровнем беклина и показателями липидного спектра выявил следующие корреляционные связи (табл. 6).

Отрицательная корреляционная связь средней силы (рис. 2) была выявлена только в молодом возрасте между ЛПВП (r = -0.6; p < 0.05) и беклином (табл. 6).

Корреляционный анализ между показателями липидного спектра и беклина у лиц с разной массой.

Исследуемые группы	Коэффициент корреляции							
	ЛПНП	ЛПВП	Общий холестерин	Триглицериды				
1. Нормальный вес (n = 19)	0,25	0,05	0,33	-0,1				
2. Ожирение (n = 31)	0,03	-0,07	0,05	-0,2				

 Π р и м е ч а н и е . ЛПНП — липопротеиды низкой плотности; ЛПВП — липопротеиды высокой плотности.

Таблица 8 Корреляционный анализ между показателями состава тела и уровнем беклина у женщин различной массы

Группы	Коэффициент корреляции								
	Возраст	Bec	ИМТ	M. M.	T. M.	Ж. М.	OBT	Внек. В.	Внут. В.
1. Нормальный вес (n = 19)	0,24	-0,01	0,07	0,1	0,1	0,24	0,1	0,08	0,04
2. Ожирение (n = 31)	-0,15	-0,26	-0,24	0,07	0,07	-0,2	0,07	-0,07	-0,15

 Π р и м е ч а н и е . ИМТ — индекс массы тела; М.М. — мышечная масса; Т.М. — тощая масса; Ж.М. — жировая масса; ОВТ — общая вода тела; Внек. В. — внеклеточная вода; Внут. В. — внутриклеточная вода.

Эта закономерность прослеживалась у женщин с концентрацией ЛПВП в интервале 1,14 ммоль/л -2,47 ммоль/л (М ср. \pm \pm m_0 = 1,58 \pm 0,14 ммоль/л). Указанный интервал показателей ЛПВП лежит в пределах физиологической нормы и оказался в большей степени связан именно с возрастом, но не с массой тела, о чем свидетельствуют данные табл. 7.

Как видно из табл. 7, корреляционной связи между уровнем беклина и показателями липидного спектра у лиц различной массы выявлено не было.

Далее был проведен корреляционный анализ показателей компонентов состава тела и концентрацией беклина в зависимости от массы тела (табл. 8).

Как видно из табл. 8, корреляционная связь ни по одному из исследуемых параметров выявлена не была.

Заключение

Как показал анализ полученных данных, концентрация беклина имела существенный разброс в межпроцентильном интервале 5–95% и варьировала от минимальных значений в 4,7 пг/мл до 216,6 пг/мл. Наличие подобного разброса может свидетельствовать о том, что на активность данного фермента могут оказывать влияние многочисленные факторы. Попытка установить закономерности активности Весlin-1 с помощью сравнения среднестатистических значений не дала результатов, однако корреляционный анализ показал на-

личие множественных достоверных связей, представляющих интерес для дальнейшего изучения. Логическим этапом исследования было сопоставление уровня маркера с массой тела, но у лиц разных возрастных категорий. Были получены интересные результаты, подтверждающие наличие умеренной прямой достоверной корреляционной связи у лиц молодого возраста между весом, индексом массы тела и беклином (r = 0.63; p < 0.05), а в группе пожилых пациентов - между возрастом и беклином (r = 0.57; p < 0.05). В первом случае увеличение активности беклина по мере увеличения массы тела можно объяснить, вероятно, несколькими факторами: наращиванием мышечной массы, в которой наиболее активно происходит процесс аутофагии [7-9], увеличением жировой массы в этот возрастной период и повышением ее провоспалительного потенциала, совершенством в этом возрасте механизмов аутофагии. Отсутствие корреляционных связей у лиц среднего возраста, по всей вероятности, как раз свидетельствует о рассогласованности уже на этом этапе механизмов аутофагии. Однако повышение активности беклина-1 (r = 0.57; p < 0.05) в группе пожилых лиц требует отдельного изучения и объяснения. Этот факт входит в некоторое противоречие с данными экспериментов на крысах [10], свидетельствующих об обратной зависимости. Многие исследователи отмечают усиление в этом возрасте образование различных радикалов, которые являются триггером процесса аутофагии. Эта активация в наших наблюдениях больше была связана с возрастом и в меньшей степени с массой. Возможно, это связано с другими механизмами, а именно с активацией процесса саркопении в пожилом возрасте [10]. Если принять тот факт, что явление аутофагии и апоптоза происходят в богатых митохондриями органах и тканях, к которым относится мышечная, то такое предположение выглядит вполне логично. В то же время оказались положительно связаны количество эозинофилов с уровнем беклина у лиц с нормальной массой и ожирением, особенно в среднем возрасте, и отрицательно с уровнем гемоглобина (r = -0.55; p < 0.01) количеством эритроцитов (r = -0.68;p < 0.01) у лиц с нормальным весом. У лиц среднего возраста, независимо от веса, выявлялась отрицательная (r = -0.34; p < 0.05)корреляционная связь между уровнем гемоглобина и уровнем беклина. Возможно, что железо гемоглобина использовалось в реакции оксидативного стресса на этапах его высокой активности. С другой стороны, снижение уровня гемоглобина на фоне повышения беклина могло быть следствием протекания в доклимактерическом периоде у женщин физиологического цикла с активацией апоптоза и аутофагии.

Одной из особенностей соотношения между беклином и ЛПВП в молодом возрасте является обратная корреляционная зависимость между ЛПВП и уровнем беклина (r = -0.6; p < 0.05). Средние концентрации беклина $(51.9\pm12.5\ \text{пг/мл})$ находились в обратной зависимости в этом диапазоне $(4.7-107.4\ \text{пг/мл})$ с оптимальным уровнем ЛПВП $(1.58\pm0.14\ \text{ммоль/л})$. Эта зависимость не прослеживается, если взять за основу массу тела. Следовательно, с определенной долей вероятности можно допустить то, что доминирующим фактором, определяющим соотношение уровня беклина и ЛПВП, является возраст.

Проведенное исследование позволило сделать несколько выводов.

- 1. Активность фермента Beclin-1 у женщин характеризуется высокой вариабельностью, зависящей от соотношения комплекса факторов: возраста, массы тела, клинических и биохимических параметров крови.
- 2. Особенностью активности Веclin-1 в различных возрастных группах является наличие положительных корреляционных связей между уровнем беклина и массой тела, ИМТ в молодом возрас-

те и между уровнем беклина и возрастом в группе пожилых.

- 3. Особенностью соотношения уровня беклина и исследуемых параметров является наличие в среднем возрасте положительной корреляционной связи беклина с количеством эозинофилов и отрицательной с концентрацией гемоглобина; в пожилом возрасте наличие отрицательной корреляционной связи с количеством моноцитов; отрицательной связи с количеством эритроцитов и гемоглобина у лиц с нормальным весом и положительной с количеством эозинофилов в группах с нормальным весом и ожирением.
- 4. В молодом возрасте у женщин выявлена отрицательная корреляционная связь между концентрацией беклина и ЛПВП, при этом уровень ЛПВП оставался в пределах физиологических колебаний.

Список литературы

- 1. Зенков Н.К., Чечушков А.В., Кожин П.М., Мартинович Г.Г., Кандалинцева Н.В., Меньщикова Е.Б. Аутофагия как механизм защиты при окислительном стрессе // Бюллетень сибирской медицины. 2019. Т. 18. № 2. С. 195–214.
- 2. Lionaki E., Markaki M., Palikaras K., Tavernarakis N. Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. Biochim Biophys Acta. 2015. Vol. 1847. No. 11. P. 1412–23.
- 3. Svenning S., Johansen T. Selective autophagy. Essays Biochem. 2013. No. 55. P. 79–92.
- 4. Khaminets A., Behl C., Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol. 2016. Vol. 26. No. 1. P. 6–16.
- 5. Morel E., Mehrpour M., Botti J., Dupont N., Hamaï A., Nascimbeni A.C., Codogno P. Autophagy: A Druggable Process. Annu Rev Pharmacol Toxicol. 2017. No. 57. P. 375–398.
- 6. Луговая А.В., Эмануэль В.С., Артемова А.В., Митрейкин В.Ф. Современные подходы к оценке биологических маркеров аутофагии и апоптоза при остром ишемическом инсульте // Современные проблемы науки и образования. 2020. № 4. [Электронный ресурс]. URL: https://science-education.ru/article/view?id = 30017 (дата обращения: 11.05.2021).
- 7. Kornfeld O.S., Hwang S., Disatnik M.H., Chen C.H., Qvit N., Mochly-Rosen D. Mitochondrial reactive oxygen species at the heart of the matter: new therapeutic approaches for cardiovascular diseases. Circ Res. 2015. Vol. 116. No. 11. P. 1783–1799.
- 8. Hamacher-Brady A., Brady N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci. 2015. Vol. 73. No. 4. P. 775–795.
- 9. Mancias J.D., Kimmelman Alec.C. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J Mol Biol. 2016. Vol. 428. No. 9. Pt A. P. 1659–1680.
- 10. Del Rosso A., Vittorini S., Cavallini G., Zina Gori A.D., Masini M., Pollera M., Bergamini E. Ageing-related changes in the in vivo function of rat liver macroautophagy and proteolysis. Exp Gerontol. 2003. Vol. 38. No. 5. P. 519–527.