УДК 532.6:546.22

НАУЧНЫЙ ОБЗОР

ОТКРЫТАЯ КВАНТОВАЯ СИСТЕМА ПОВЕРХНОСТНОГО СЛОЯ АТОМНО-ГЛАДКИХ МЕТАЛЛОВ

¹Юров В.М., ²Гончаренко В.И., ²Олешко В.С., ¹Жангозин К.Н.

¹ТОО «ТСК Восток», Караганда, Астана, e-mail: exciton@list.ru; ²ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)», Москва, e-mail: OleshkoVS@mai.ru

Поверхностный слой атомно-гладких металлов рассмотрен как открытая квантовая система, где эволюция матрицы плотности следует эффективному неэрмитову гамильтониану. В этом случае собственные состояния неэрмитового оператора локализованы на межфазной границе и предполагают неблоховское соответствие объем – граница. Целью настоящей статьи является обсуждение превращения энергии деформации в другие виды энергии при внешних воздействиях на открытую квантовую систему поверхностного слоя атомно-гладких металлов. Показано, что поверхностный слой представляет собой двойной элекгрический слой и нелинейный конденсатор, из-за наличия размерных эффектов, а энергия деформации равна энергии Ферми электронов объемного металла. Всякое изменение параметров внешней среды (давление, температура и пр.) сказывается на свойствах поверхностного слоя (образование дислокаций, трещин и пр.), особенно на межфазной границе (энергия деформации). Все это приводит к изменению энергии деформации путем акустоэмиссии металла, автоэлектронной эмиссии электронов, фрактолюминесценции металла и пр. Предложенная в статье модель превращения энергии деформации в другие виды энергии позволяет исследовать состояние металлических конструкций в процессе их эксплуатации. Это актуально для теоретического осмысления систем неразрушающего контроля деталей в авиации и ракетно-космической технике, в машиностроении и пр.

Ключевые слова: металл, деформация, энергия, акустоэмиссия, автоэлектронная эмиссия, работа выхода, фрактолюминесценция

Данная научная статья опубликована в рамках выполнения грантового финансирования на 2024–2026 гг. ИРН № АРЗ2488258 «Разработка инновационной технологии получения графена интеркаляцией графита микрокластерной водой и модификация графеном ВТСП керамики» (исследование финансируется МОН РК).

OPEN QUANTUM SYSTEM OF THE SURFACE LAYER OF ATOMIC-SMOOTH METALS

¹Yurov V.M., ²Goncharenko V.I., ²Oleshko V.S., ¹Zhangozin K.N.

¹TSC Vostok LLP, Karaganda, Astana, e-mail: exciton@list.ru; ²Moscow Aviation Institute (National Research University, Moscow, e-mail: OleshkoVS@mai.ru

The surface layer of atomically smooth metals is considered as an open quantum system, where the evolution of the density matrix follows an effective non-Hermitian Hamiltonian. In this case, the eigenstates of the non-Hermitian operator are localized at the interface and assume a non-Bloch bulk-boundary correspondence. The purpose of this paper is to discuss the transformation of the strain energy into other types of energy under external influences on the open quantum system of the surface layer of atomically smooth metals. It is shown that the surface layer is a double electric layer and a nonlinear capacitor, due to the presence of size effects, and the strain energy is equal to the Fermi energy of electrons in the bulk metal. Any change in the parameters of the external environment (pressure, temperature, etc.) affects the properties of the surface layer (formation of dislocations, cracks, etc.), especially at the interface (strain energy). All this leads to a change in the strain energy by means of metal acoustic emission, electron field emission, metal fractoluminescence, etc. The model of transformation of deformation energy into other types of energy proposed in the article allows to study the state of metal structures during their operation. This is relevant for theoretical understanding of non-destructive testing systems for parts in aviation and rocket and space technology, in mechanical engineering, etc.

Keywords: metal, deformation, energy, acoustic emission, field emission, work function, fractal luminescence

This scientific article was published within the framework of the grant funding for 2024–2026. IRN No. AR32488258 "Development of an innovative technology for obtaining graphene by intercalation of graphite with microcluster water and modification of HTSC ceramics with graphene" (the research is funded by the Ministry of Education and Science of the Republic of Kazakhstan).

Введение

В работе [1] была описана квантовая структура поверхностного слоя R(I) атомно-гладких металлов (АГМ). Слой R(I) описывается уравнением Шредингера без привлечения внешних воздействий, то есть без внешней среды. В настоящей статье рассмотрен вопрос о поверхностном слое с учетом внешних воздействий, то есть в открытой квантовой системе, где не работают

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH №4, 2025 уравнения Шредингера, а работают уравнения Линдблада [2] и где эволюция матрицы плотности следует эффективному неэрмитову гамильтониану. Одним из явлений неэрмитовых систем является неэрмитов скин-эффект [3], а именно то, что большинство собственных состояний неэрмитового оператора локализованы на границах, что предполагает неблоховское соответствие объем – граница [4] и неблоховскую зонную теорию, основанную на обобщенной зоне Бриллюэна [5]. В статье рассмотрен раздел объем – межфазная граница АГМ, где формируется зона деформации со своей энергией E_d, которая описывается уравнением [6]:

$$\mathbf{E}_{d} = \frac{1}{n} \mathbf{W}_{a} \cdot \mathbf{R}(\mathbf{I})^{2} = \mathbf{W}_{a} \cdot \mathbf{R}(\mathbf{I}) \cdot \mathbf{a}, \quad (1)$$

где W_а – энергия адгезии, а – постоянная кристаллической решетки.

Для АГМ энергия деформации Е_d, определенная по формуле (1), показана в табл. 1.

Энергия деформации при внешнем воздействии расходуется на тепло, на акустоэмиссию (распространение звуковых волн), автоэлектронную эмиссию (испускание медленных электронов) и фрактолюминесценцию.

Цель исследования. В работе обсуждается превращение энергии деформации в другие виды энергии при внешних воздействиях на открытую квантовую систему поверхностного слоя атомно-гладких металлов.

Материалы и методы исследования

Объектом исследования являлись АГМ по Джексону [1]. Метод исследования включал уравнение (1) и формулы работы [1] и их сравнение с энергией Ферми электронного газа атомно-гладких металлов.

Результаты исследования и их обсуждение

Энергия деформации поверхностного слоя ненагруженных АГМ

Поверхностный слой R(I) металла имеет размеры от 1 до 6 нм [1], то есть представляет собой наноструктуру. В поверхностном слое R(I) происходят релаксация или реконструкция [7, с. 205] атомных монослоев (рис. 1).

Таблица 1

Энергия деформации Е_д некоторых АГМ

АГМ	E_d , (E_F) $3B$	АГМ	E_d , (E_F) $3B$	ΑΓΜ	Е _d , (Е _F) эВ	ΑΓΜ	E_d , (E_F) $3B$
Be	15,61 (15,85)	Cu	7,68 (7,93)	Mo	7,16 (6,57)	Re	9,38 (10,80)
Al	11,73 (11,7)	Ag	5,64 (6,15)	W	12,23 (10,42)	Fe	12,0 (12,72)
Si	12,61 (8,84)	Au	6,10 (6,23)	Mn	9,73 (12,25)	Co	12,9 (13,22)
Ge	10,77 (8,09)	Cr	7,26 (7,80)	Tc	6,08 (9,91)	Ni	13,06 (13,22)

Источник: составлено авторами.

Рис. 1. Преобразование поверхности металла Источник: составлено авторами

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ №4, 2025 У большинства металлов происходит релаксация поверхности. На поверхностях некоторых ГЦК металлов (например, Au, Ir и Pt), а также переходных ОЦК металлов (W и Mo) наблюдаются реконструкции [7, с. 205]. И релаксация, и реконструкция поверхности приводит к возникновению напряженно-деформируемых состояний, которые характеризуются энергий деформации металла E_d в ненагруженном состоянии (табл. 1).

Превращение энергии деформации в тепловую энергию электронного газа АГМ

Температура электронного газа в металле $T_{\rm F}$ определяется энергией Ферми ${\rm E_F}$ [8, с. 34] и равна $T_{\rm F}$ = ${\rm E_F}$ / $k_{\rm B},$ где $k_{\rm B}$ = 8,6 10^{-5} эВ/К – постоянная Больцмана.

Энергия Ферми Е_г электронного газа определяется выражением

$$E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m} = \frac{50.1 \cdot 9B}{(r_{\rm s} / a_0)^2},$$
 (2)

где $k_{\rm F}$ – волновой вектор Ферми; $r_{\rm s}$ – радиус сферы, приходящийся на один электрон проводимости; m – масса электрона; а₀ – радиус атома водорода.

Значения энергии Ферми показаны в скобках в табл. 1 [9, с. 8, 10], а Т_F представлено в табл. 2.

Из табл. 1 видно, что энергия $E_F \approx E_d$. Это означает, что на межфазной границе, то есть при z = R(I), собираются электроны с энергией деформации E_d , равной энергии Ферми E_F , которая характерна для объемного (3D) металла. С термодинамической точки зрения такое равенство энергий означает равенство на межфазной границе химических потенциалов, что соответствует равновесию слоя R(I) (2D), погруженного в термостат объемного (3D) металла. Схему поверхностного слоя R(I) представим на рис. 2, а.

Из рис. 2, а, следует, что слой R(I) представляет собой двойной электрический слой (ДЭС), теория которого освещена в работах [11, с. 7, 12, 32] и на рис. 2, б. Слой R(I) представляет собой нелинейный конденсатор, из-за наличия размерных эффектов [1], и его схема похожа на работу [13, с. 124].

Рис. 2. Схема поверхностного слоя R(I) АГМ (а), схема ДЭС (б) Источник: составлено авторами по [11]

Таблица 2

АГМ	Т _г , 10 ⁴ К	АГМ	Т _г , 10 ⁴ К	АГМ	Т _г , 10 ⁴ К	АГМ	T _F , 10 ⁴ K
Be	6,34	Cu	8,94	Мо	12,5	Re	10,9
Al	9,08	Ag	6,56	W	14,2	Fe	4,76
Si	14,7	Au	7,09	Mn	11,7	Со	4,57
Ge	12,5	Cr	5,63	Tc	8,6	Ni	4,50

Источник: составлено авторами.

Таблица 3

ΑΓΜ	$\lambda = R(I), HM$	υ_{\perp} , m/c	f _o , ТГц (Е _{тгц} , эВ)	АГМ	$\lambda = R(I), HM$	υ_{\perp} , м/с	f _o , ТГц (Е _{тгц} , эВ)
Be	0.8 (3)	6400	8,00 (15,25)	Mo	1.8 (5)	2700	1,50 (7,86)
Al	1.6 (4)	3130	1,96 (14,81)	W	1.6 (5)	2620	1,64 (9,86)
Si	2.1 (4)	2200	1,05 (12,94)	Mn	1.1 (2)	2575	2,34 (11,41)
Ge	2.4 (4)	2700	1,13 (11,79)	Tc	1.4 (5)	8100	5,79 (10,81)
Cu	1.2 (3)	2260	1,88 (8,06)	Re	1.5 (5)	2350	1,96 (8,91)
Ag	1.7 (4)	1590	0,94 (5,23)	Fe	1.2 (3)	3250	2,71 (10,78)
Au	1.7 (4)	1200	0,81 (5,16)	Co	1.1 (3)	2360	2,15 (9,58)
Cr	1.2 (4)	2970	1,48 (6,68)	Ni	1.1 (3)	2960	2,69 (10,19)

Собственная частота волн Лэмба для АГМ

Источник: составлено авторами.

Превращение энергии деформации в акустоэмиссию АГМ

На сегодняшний день известно несколько источников акустоэмиссии металлов: движение дислокаций; зарождение и рост трещин; процесс двойникования [14, с. 12]. Авторы добавляют в этот список превращение энергии деформации в акустоэмиссию. Поскольку слой R(I) представляет собой конечную 2D-наноструктуру, то здесь могут распространяться следующие типы волн: Лэмба; Рэлея; Стоунли и Лявы [15; 16]. Для микроэлектроники авторы применяют волны Лэмба и Явы [17; 18, с. 18], для горных пород и сейсмоакустики авторы применяют волны Рэлея и Стоунли [19; 20]. Для металлов в промышленности, в авиационной и ракетной технике авторы используют волны Лэмба [21; 22], теория которых продолжается до сих пор [23; 24].

Рассмотрим волны Лэмба. Согласно работе [24] длина первой волны Лэмба равна толщине слоя, то есть $\lambda = R(I)$. Для коротких волн длины волн равны $\lambda_n = R(I) / n$, где n – число монослоев (в скобках табл. 3). Авторы рассчитали собственную частоту $f_o = \upsilon_{\perp} / R(I)$ волны Лэмба для АГМ (табл. 3), где υ_{\perp} – скорость поперечной волны объемного металла.

Из табл. З видно, что волны Лэмба в нанослое R(I) имеют собственную частоту f в терагерцевом диапазоне, исследование которого начато недавно [25] и продолжается до сих пор [26; 27]. Кванту энергии $E = h \cdot f_o \ B \ 1 \ T\Gamma \mu \ coordet correct correct remnepaty T_{T\Gamma \mu} = 47,7 \ K. Тогда отношение температуры T_F из табл. 2 к температуры T_{T\Gamma \mu} даст число квантов суммарной энергии <math>E_{T\Gamma \mu}$ волн Лэмба. Такие расчеты представлены в скобках табл. 3, из которой следует

 $E_{T\Gamma_{II}} \approx E_{F} \approx E_{d}$. Итак, энергия деформации превращается в акустоэмиссию при внешнем воздействии (лазерное облучение, ультразвук и пр.).

Превращение энергии деформации в автоэлектронную эмиссию АГМ

Для эмиссии электронов из металлов с атомно-гладкой поверхностью применяют теорию Фаулера – Нордгейма (рис. 3, а), формула которой выглядит так [28, с. 16]:

$$j \approx \frac{\mathbf{a} \cdot \mathbf{E}^2}{\Phi} \cdot \exp\left(-\frac{\mathbf{b} \cdot \Phi^{3/2}}{\mathbf{E}}\right).$$
 (3)

где j – плотность тока (A/см²), E – локальное электрическое поле у поверхности эмиттера (B/см), Φ – работа выхода (эB), a, b – постоянные.

Вольт-амперная характериктика характерна для вакуумного диода и отвечает рис. 2, б. Теория Фаулера – Нордгейма хорошо описывает экспериментальные результаты для металлических эмиттеров в форме острия, когда его радиус больше 100 нм. Когда радиус эмиттера меньше 10 нм, то теория Фаулера – Нордгейма дает слишком завышенные результаты [28]. Авторами показано, что толщина поверхностного слоя R(I) АГМ составляет 1-6 нм. Автоэмиссия электронов из твердого тела используется при изготовлении автокатодов из различных материалов вольфрама, молибдена, рения, платины, хрома, ниобия, гафния и различных полупроводников [29].

Величина работы выхода электронов для АГМ из рис. 3, а, равна $\Phi = W - E_F$ и представлена в табл. 4 по результатам справочников [30].

Рис. 3. Потенциальная энергия электрона около металлической поверхности из-за наложения электрического поля напряженностью Е. Суммарный потенциал (сплошная линия) складывается из потенциала сил изображения и внешнего потенциала, Φ – работа выхода без поля, ΔΦ – изменение работы выхода с полем (a); вольт-амперная характеристика (б) Источник: составлено авторами

Таблица 4

ΑΓΜ	$\Phi \cdot (2\Phi)$, эВ	АГМ	Ф ∙ (2Ф), эВ	АГМ	$\Phi \cdot (2\Phi),$ эВ	ΑΓΜ	$\Phi \cdot (2\Phi)$, эВ
Be	3,9 (7,8)	Cu	4,4 (8,8)	Mo	4,2 (8,4)	Re	5,0 (10,0)
Al	4,2 (8,4)	Ag	4,7 (9,4)	W	4,6 (9,2)	Fe	4,7 (9,4)
Si	4,7 (9,4)	Au	4,8 (9,6)	Mn	4,0 (8,0)	Co	4,4 (8.8)
Ge	4,7 (9,4)	Cr	4,6 (9,2)	Tc	_	Ni	5,0 (10,0)

Работа выхода электронов некоторых АГМ

Источник: составлено авторами.

Из сравнения табл. 4 с табл. 1 и 3 следует, что $\Phi = 0.5E_{\rm F}$, так что порог эмиссии будет равен

$$\delta \Phi = 0.5 \mathrm{E}_{\mathrm{E}} / \mathrm{e} \cdot \mathrm{R(I)},$$

где е – заряд электрона. Знание величины $\delta\Phi$ актуально для систем микроволновой связи, визуализации ИК-излучения, радиочастотной локации.

Превращение энергии деформации в фрактолюминесценцию АГМ

Фрактолюминесценция (ФЛ) – это излучение света от разрушения кристалла. Разрушение кристалла может происходить при трении, а излучение света при этом названо триболюминесценцией (ТЛ), которое является синонимом ФЛ. Существуют две основные точки зрения по поводу причин возникновения ФЛ и ТЛ [31]. Одни авторы относят ФЛ и ТЛ к газовому разряду между берегами растущих трещин, а другие – приписывают электронно-возбужденным свободным радикалам на берегах трещин. До настоящего времени дискуссия по возникновению ФЛ и ТЛ продолжается.

В работе [32] металлические мишени из платины, серебра и золота облучались лазером с тыльной стороны и измерялись фотоны люминесценции и электроны, испущенные из металла. Оказалось, что импульсы фотонов совпадают с импульсами электронов, то есть при деформации металлических мишеней одновременно происходит превращение энергии E_d в фрактолюминесценцию и автоэлектронную эмиссию электронов. Тогда длину фотонов для АГМ авторы данной статьи определяют аналогично, то есть $\lambda = \hbar \cdot c/0,5E_d$ (табл. 5).

Видимый свет (380–750 нм) не включает в себя металлы Ве, Al, Si, Ge, W, Fe, Co, Ni, а люминесценция их расположена в ультрафиолете. Фрактофотолюминесценция чистых металлов практически не исследована, поскольку свечение у них слабое и расположено у большинства из них вне видимой области спектра. Для цепочек из золота люминесценция исследовалась в работе [33] и показана на рис. 5.

INTERNATIONAL JOURNAL OF APPLIED AND FUNDAMENTAL RESEARCH №4, 2025

Таблица 5

АГМ	λ, нм						
Be	256	Cu	521	Мо	559	Re	426
Al	341	Ag	609	W	328	Fe	333
Si	318	Au	556	Mn	411	Со	310
Ge	368	Cr	552	Tc	667	Ni	307

Длина волны максимума фрактолюминесценции АГМ

Источник: составлено авторами.

Длины волн (нанометры)

Рис. 4. Электромагнитный спектр (immunocap.ru)

Рис. 5. Спектры люминесценции золота с временным разрешением и их кривые деконволюции (зеленые) при 77 К ($\lambda_{ex} = 355$ нм) [33]

Чтобы сравнить данные табл. 5, приведем спектр электромагнитных волн (рис. 4).

Сравнение рис. 5 и табл. 5 приводит к выводу, что модель авторов данной статьи о превращении энергии деформации в люминесценцию чистых металлов при внешнем возбуждении верна.

Заключение

В статье показана исключительная роль поверхностного слоя чистых металлов, особенно его межфазной поверхности, где сосредоточена энергия деформации. При внешних воздействиях (ультразвук,

МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ №4, 2025 PHYSICAL AND MATHEMATICAL SCIENCES

электрическое или магнитное поле и пр.) энергия деформации становится источником акустоэмиссии, инжекции электронов и пр., то есть становится методом неразрушающего контроля металлических изделий.

Список литературы

1. Юров В.М., Гончаренко В.И., Олешко В.С., Жангозин К.Н. Квантовые свойства поверхностного слоя атомногладких металлов // Международный журнал прикладных и фундаментальных исследований. 2024. № 12. С. 52–57. DOI: 10.17513/mjpfi.13682.

2. Diehl S., Rico E., Baranov M.A., Zoller P. Topology by dissipation in atomic quantum wires // Nat. Phys. 2011. Vol. 7. P. 971–986. DOI: 10.1038/nphys2106.

3. Yao S., Wang Z. Edge States and Topological Invariants of Non-Hermitian Systems // Phys. Rev. Lett. 2018. Vol. 121. 086803. DOI: 10.48550/arXiv.1803.01876.

4. Kunst F.K., Edvardsson E., Budich J.C., Bergholtz E.J. Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems // Phys. Rev. Lett. 2018. Vol. 121. 026808. DOI: 10.1103/PhysRevLett.121.026808.

5. Deng T.-S., Yi W. Non-bloch topological invariants in a non-Hermitian domain wall system // Phys. Rev. B. 2019. Vol. 100. 035102. DOI: 10.1103/PhysRevB.100.035102.

6. Yurov V.M., Zhangozin K.N., Kargin D.B. Mechanism of luminescence of carbon materials // German International Journal of Modern Science. 2025. № 98. P. 58–66. DOI: 10.5281/zenodo.14910955.

7. Оура К., Лифшиц В.Г., Саранин А.А., Зотов А.В., Катаяма М. Введение в физику поверхности. М.: Наука, 2006. 490 с.

8. Абрикосов А.А. Основы теории металлов. М.: ФИЗ-МАТЛИТ, 2010. 600 с.

9. Глазков В.Н. Свойства электронного ферми-газа. М.: МФТИ, 2022. 35 с.

10. Платонова Е.С., Бучинскас В., Юров В.М. Термодинамическая модель образования коррозионного пятна на металле // Фундаментальные исследования. 2015. № 2. С. 3281–3284.

11. Писарева Т.А., Борисова Е.М., Решетников С.М. Создание и изучение эффективных суперконденсаторов на основе двойного электрического слоя. Ижевск: Издательский центр «Удмуртский университет», 2021. 96 с.

12. Салем Р.Р. Теория двойного слоя. М.: ФИЗМАТЛИТ, 2003. 104 с.

13. Клещ В.И. Эмиссия электронов из углеродных наноструктур: дис. ... докт. физ.-мат. наук. Москва, 2024. 323 с.

 Буйло С.И. Физико-механические, статистические и химические аспекты акустико-эмиссионной диагностики.
Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2017. 184 с.

15. Петухов Ю.В. К теории поверхностных волн Лэмба, Стоунли-Шолтэ и Рэлея, распространяющихся вдоль границы раздела Земля – Атмосфера // Акустический журнал. 1992. Т. 38. Вып. 4. С. 738–744.

16. Mahmoodian M., Eskandari-Ghadi M., Nikkhoo A. Rayleigh, Love and Stoneley waves in a transversely isotropic saturated poroelastic media by means of potential method // Soil Dynamics and Earthquake Engineering, 2020. Vol 134. P. 106139. DOI: 10.1016/j.soildyn.2020.106139. 17. Гуляев Ю.В., Хикернелл Ф.С. Акустоэлектроника: история, современное состояние и новые идеи для новой эры // Акустический журнал. 2005. Т. 51, № 1. С. 101–110.

18. Титов С.А. Многоэлементная акустическая микроскопия: дис. ... докт. техн. наук. Москва, 2022. 313 с.

19. Загорский Л.С., Шкуратик В.Л. Метод определения вертикального сейсмического разреза массива горных пород с использованием волн типа Рэлея // Акустический журнал. 2013. Т. 59, № 2. С. 222–231. 1)01: 10.7868/ S0320791913020147.

20. Беседина А.Н., Тубанов Ц.А. Микросейсмы как инструмент геофизических исследований. Состояние вопроса // Вулканология и сейсмология. 2023. № 2. С. 12–32. DOI: 10.31857/S0203030623700116.

21. Кузнецов С.В. Волны Лэмба в анизотропных пластинах (обзор) // Акустический журнал. 2014. Т. 60, № 1. С. 90–100. DOI: 10.7Х68/S0320791914010092.

22. Смирнова М.С., Теплякова А.В. Влияние несплошностей на распространение волн Лэмба в пластинах // Известия СПбГЭТУ ЛЭТИ. 2024. Т. 17, № 2. С. 54–60. DOI: 10.32603/2071-8985-2024-17-2-54-60.

23. Гапоненко С.О., Кондратьев А.Е., Мустафина Г.Р. Построение математической модели распространения волн Лэмба в стальном трубопроводе с защитным наружным покрытием // Известия высших учебных заведений. Проблемы энергетики. 2022. Т. 24, № 4. С. 3–15. DOI: 10.30724/1998-9903-2022-24-4-3-15.

24. Мокряков В.В. Внутренние антисимметричные волны Лэмба // Акустический журнал. 2023. Т. 69, № 3. С. 284–294. DOI: 10.31857/S0320791922600573.

25. Ахмеджанов Р.А., Иляков И.Е., Миронов В.А., Оладышкин И.В., Суворов Е.В., Фадеев Д.А., Шишкин Б.В. Генерация терагерцового излучения при взаимодействии интенсивных фемтосекундных лазерных импульсов с поверхностью металла // Известия вузов. Радиофизика. 2014. Т. LVII, № 11. С. 902–911.

26. Гибин И.С., Котляр П.Е. Оптико-акустические приемники ИК- и ТГц-излучения с нанооптоэлектромеханическими элементами на основе однослойного графена // Автометрия. 2021. Т. 57, № 1. С. 57–67. DOI: 10.15372/AUT20210107.

27. Никитин П.А. Акустооптические методы в терагерцевом диапазоне // Светотехника. 2022. № 5. С. 52–58.

28. Fursey G.N. Field Emission in Vacuum Microelectronics. NY.: Kluwer Academic, 2005. 205 p.

29. Шестеркин В.И. Эмиссионно-эксплуатационные характеристики различных типов автоэмиссионных катодов // Радиотехника и электроника. 2020. Т. 65, № 1. С. 3–30. DOI: 10.31857/S0033849420010040.

 Гончаренко В.И., Олешко В.С. Метод контактной разности потенциалов в оценке энергетического состояния поверхности металлических деталей авиационной техники: монография. М.: Изд-во МАИ, 2019. 160 с.

31. Веттегрень В.И., Пономарев А.В., Кулик В.Б., Мамалимов Р.И., Щербаков И.П. Разрушение кварцевого диорита при трении // Геофизические исследования. 2020. Т. 21, № 4. С. 35–50. DOI: 10.21455/gr2020.4-3.

32. Абрамова К.Б., Русаков А.И., Семенов А.А., Щербаков И.П. Люминесценция металлов, возбуждаемая при быстром неразрушающем нагружении // Физика твердого тела. 1998. Т. 40, № 6. С. 957–965.

 Seifert T.P., Naina V.R., Feuerstein Th.J., Knutel N.D. and Roesky P.W. Molecular gold strings: aurophilicity. luminescence and structure–property correlations // Nanoscale. 2020.
Vol. 12. P. 20065–20088. DOI: 10.1039/d0nr04748a.